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Abstract

This paper proposes a strength reliability model based on a Markov process for unidirectional composites with fibers
in a hexagonal array. The model assumes that a group of fiber breaking points, a so-called cluster, evolves with in-
creased stress. The cluster evolution process branches because of various fiber-breakage paths. Load-sharing structure
of intact fibers around clusters was estimated from geometric and mechanical local load-sharing rules. Composites
fracture if a cluster achieves a critical size, so the model expresses a fracture criterion by setting an absorbing state.
Next, the author constituted a state transition diagram concerning cluster evolutions of 1-fiber to 7-fiber breaks and
analytically solved simultaneous differential equations obtained from the diagram. Results showed that, as critical
cluster size increases, slope of the fracture probability distribution is given in a Weibull probability scale as follows:
me = i X mg (i, the number of broken fibers in a cluster; m. and m¢, Weibull shape parameters for fracture probabilities
of a critical cluster and fiber strength, respectively). This relation between m. and m¢ had been shown by Smith et al.
[Proc. R. Soc. London, A 388 (1983) 353-391], but the present study demonstrated it analytically without any lower tail
of the Weibull distribution used in that paper. In addition, the present model can be approximated by a one-state birth
model.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite materials reinforced with continuous inorganic fibers, such as carbon, silicon carbide, and
boron, are expected to be widely applied for mechanical and structural components because of their high
specific strength and rigidity, and excellent durability. Because such reinforcing fibers are generally brittle
and have a large scatter in strength, mechanical properties of composites have often been discussed from
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the viewpoint of materials reliability engineering. In particular, axial tensile strength of a unidirectional
fiber composite has been discussed from the vantage of probability theory (Rosen, 1964; Zweben, 1968;
Scop and Argon, 1967, 1969; Harlow and Phoenix, 1978a,b; Fukuda et al., 1981; Phoenix and Smith, 1983).
When the composite is tensile-loaded along the fiber-axis, some weak fibers are broken, but these breaks do
not cause the composite’s fracture immediately. As applied load increases, a group of fiber-breaks evolves
into a source of stress concentration, a so-called “cluster”’. In addition, axial stress acting on broken fibers
completely recovers in regions that are distant from their breaking points because of matrix shear function.
A length of twice the stress recovery region is often called “ineffective length” (Zweben, 1968; Harlow and
Phoenix, 1981a,b); this is a key parameter in modeling the composite. Broken fibers cannot sustain the
applied load within the ineffective length; therefore, just as with a bundle structure, the composite is
modeled as a chain connecting bundles to each other. This model is called the “chain-of-bundles model” or
the “Rosen model” (Zweben, 1968; Harlow and Phoenix, 1981a,b); it has often been used as a standard
model in predicting tensile strength of the composite. It should be noted that Harlow and Phoenix (1981a,b)
proposed a cluster evolution model, called recursion analysis, and gave a theoretical perspective to interpret
a size effect in composite strength. Further, Pitt and Phoenix (1983) improved recursion analysis to a new
stochastic model in which load-sharing fibers around clusters are given more realistically. Smith (1980) and
Batdorf (1982) each proposed their own model independently at nearly the same time. These two models
were identical and approximated recursion analysis of Harlow and Phoenix (1981a,b) by applying a power
law function to the multiplication rule. The author also applied the Markov process model to the chain-
of-bundles model and obtained an analytical solution for predicting fracture probability of the composite
(Goda, 2001). Thus, various stochastic models for prediction of composite strength have been developed
based on the chain-of-bundles model. These models are available mainly for prediction of tensile strength
or lifetime of a unidirectional composite with two-dimensional fiber arrays, but not of a unidirectional
composite with hexagonal fiber arrays. The latter is significant for practical use. To hexagonally-placed
fiber composites, an equal (or global) load-sharing rule (Harlow and Phoenix, 1978a,b; Curtin, 1991) can be
applied as an upper bound in strength; by that rule, the load lost by fiber breaks is considered to be evenly
shared among all intact fibers within the ineffective length. However, this study focuses on a stochastic
model on the basis of local load-sharing rule in which the load transferred from broken fibers is imposed
only upon the closest intact fibers. By this rule, the severest condition for the composite’s fracture is given
and a lower bound in strength or lifetime is predicted.

Reliability strength of the hexagonally-placed fiber composite, subject to two local load sharing
rules, was discussed in Smith et al. (1983). That study proposed a lower-tail approximation model for
distribution of fracture probability of the composite in which a power law function (Smith, 1980; Batdorf,
1982) is again applied to fiber strength. In the lower tail of the Weibull distribution, probability distri-
bution F(c) is approximated as F(o) =~ (d/a¢)”, where p and o, are the shape and scale parameters of
fiber strength, respectively. Then, fracture probability P, of the composite at stress ¢ is equal to the sum of
all possibilities of fiber breaking processes as P, ~ d;(o/ oo)kp , where k is the number of broken fibers in-
cluded in a critical cluster which fractures the composite. Therefore the shape parameter of composite
strength is given as kp and d; is a scale effect parameter obtained from all possibilities transiting to the
critical cluster. Parameter dj, was calculated for £ < 7, but approximated for £ > 7 by assuming a dominant
cluster configuration for each size because numbers of cluster configurations and fiber breaking processes
are extremely large. Their main results were: (1) the distribution of fracture probability of hexagonally-
placed fiber composite behaves similarly to that of a planar composite; (2) a hexagonally placed fiber
composite is stronger than a planar composite; and (3) two different local load-sharing rules, glls (geo-
metric local load sharing) and mlls (mechanical local load sharing), predict similar fracture probabili-
ties.

This study proposes a new stochastic model for analyzing distribution of fracture probability of the
hexagonally-placed fiber composite, using a Markov process model (Karlin et al., 1990), to develop the
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model proposed by Smith et al. (1983). The proposed model gives an exact solution of distribution
of fracture probability, in which the lower tail of the Weibull distribution used in Smith’s paper, a power
law function, is not applied; failure rate of the Weibull distribution is applied. However, two local load-
sharing rules used in the Smith model are still used in the present model. Fracture probabilities using the
two rules indicated almost identical values despite the fact that the two load sharing factors were quite
different, as in results obtained by Smith et al. (1983). This implies that distribution of fracture probability
of the hexagonally-placed fiber composite is not necessarily affected by individual variation in load-sharing
factors, but is rather affected by total magnitude of load-sharing factors. Finally, we conclude from this
result that a one-state birth process is approximately applicable for distributions of fracture probabilities of
k>1.

2. Analytical procedure
2.1. State transition diagram by Markov process

The composite analyzed in this study is a unidirectional fiber composite with fibers placed in a hexagonal
array; their length is equivalent to the ineffective length, a unit length of the chain-of-bundles. This com-
posite is subject to a tensile load with a stress rate, o, along the fiber axis; each fiber evenly sustains the stress
at an initial loading stage. As stress increases, lower-strength fibers break first. Each fiber break gives a
stress concentration to intact fibers around itself. As the number of breaking points increases, a group of
breaking points is evolved to a source of stress concentration, i.e. a “cluster”, which is able to fracture the
composite. It may be considered that, if the cluster reaches a critical size, the composite will be fractured
because of unstable extension of the cluster. Although various configurations of clusters on hexagonally-
placed fibers are generated, this analysis assumes that only intact fibers adjacent to breaking points are
broken at the same cross-section according to two local load-sharing rules, shown later, and counted as
structural elements of a cluster. As mentioned above, such a locally limited fiber breaking process must be
the most dangerous evolution process in evaluating the composite’s fracture; it gives a lower bound in
strength of the composite.

We consider here that the fiber breaking process is a stochastic process which is determined from the
relation between damage states at times ¢ and ¢+ Az. That is, whether the composite includes a large
number of broken fibers in the past or no broken fibers, the process is independent of past damage states.
The present damage state dominates subsequent damage states. Thus, a Markov process model was applied
to this process in which a damage state, i.e. a fiber breaking state, evolves temporally in a discrete state
space {S}. Fig. 1 shows the state transition diagram used in this study. In it, all possible paths transiting
from no fiber-break to four fiber-breaks are indicated (henceforth, no fiber-break and four fiber-break are
denoted as the “0-break cluster” and ““4-break cluster”, respectively; generally we will use the ““i-break
cluster”). A transition probability from a state to the next state is given as the product of a failure rate i,’Z“
(S, to S,41) and a stress increment aA¢f(= Ao). Although the probability of transition from state S,, is
described exactly as 2”"'Ag 4 o(Ac), the term o(Aqg) approaches zero when Ag — 0. Therefore, transition
probabilities are denoted below without the term o(Ag), which is a residual term showing the probability of
transition from S,, to S, » or more. Thus, the transition probability from state S, to state S;, i.e. the
probability that an intact fiber is broken in A¢ from a stress g, is /I(I)Aa. This broken fiber brings identical
stress concentration to each of the six intact fibers adjacent to itself. The transition probability from S; to
S,, i.e. the probability that one of the six adjacent fibers is broken in Ac from stress o, is expressed as )vaa.
This transition brings a series of two fiber breaks, i.e. the 2-break cluster, as shown in state S,. The 2-break
cluster imparts a stress concentration to each of eight intact fibers adjacent to itself, but the degree of stress
concentration is not equal because several intact fibers are obviously located more closely to the two broken
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Fig. 1. State transition diagram of fiber breaking path to a 4-break cluster in a hexagonal fiber array.

fibers than others. We count first the number of cluster configurations without differentiating rotation and
reflection of configuration because rotated and reflected configurations generate an identical load-sharing
factor to intact fibers. Thus, the fiber breaking process branches into three states at the formation of a 3-
break cluster, as shown in S3;, S3, and S5 of Fig. 1. These transitions from 2-break to 3-break clusters also
follow three different failure rates, 43", 23 and 43°. Furthermore, 3-break clusters branch to more states at
the formation of 4-break clusters, as shown in Fig. 1. Numbers branching from states Ss;, S;, and S;; are
three, six and two, respectively, but the number of 4-break cluster configurations is seven, as shown in states

Sa1, Saz, Sa3, Saa, Sas, Sae and Sy7 of Fig. 1. The number of paths transiting from 3-break clusters to 4-
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break clusters is, in total, 11; each of the paths also shows different failure rates. The number of paths
transiting from 2-break to 4-break clusters is also 11.

The number of 5-break cluster configurations further increases to 22, as shown in Fig. 2. Parentheses in
the figure show which 4-break states generate S5-break states. We understand from this figure that the
number of paths transiting from 4-break to 5-break clusters is 45; also, the number of failure rates is the
same. However, the number of paths transiting from 2-break to 5-break clusters is not the same. For ex-
ample, although state Ss; is generated only from state S;; (the number of paths is one, given as
S; — S31 — S41 — Ss1), the number of paths from state S, to state Ss» is not two but three, because state
S4, is generated from S;; and S;,. Furthermore, the number of paths from state S, to Ss; increased up to
six because state S, 3 is generated from Ss;, S3, and S; 3. Thus, the number of paths transiting from 2-break
to 5-break clusters increases to 80. The number of configurations at the formation of 6-break clusters was
82, as indicated in Smith et al. (see Appendix A). According to our count, the number of paths transit-
ing from 5-break to 6-break clusters was 214 and the number of paths from 2-break to 6-break clusters was
822.

In the Markov process model, an ordinary differential equation is obtained when taking Ac — 0
for a relation between states at stresses ¢ and ¢ + Ag. For example, the probability P, of being in
state Sy is given as: Pr {state 0 at o+Ac} =Pr {state 0 at ¢} Pr {no failure in (6,0 + Ac)}. The second
factor is just 1 —POA(I)AJ, as shown in Fig. 1. By passing to the limit as Ag — 0, one obtains the first
equation of Eq. (1) shown later. When taking Ac — 0 for all relations between states at stresses o
and ¢ + Ao in Fig. 1, the fiber breaking process is described by simultaneous ordinary differential equa-
tions as
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dPO 1
2P0 =0,
do + 0=
dp,
! /11P0 —+ /L%P] = 0
do
dp: ,
qo AP (BT 5P =0,
dp:
d;l P2+(}§}+)°31+”21)P31—0
P> sop + (3 + 233 + 235+ A+ A5+ 40Py =0
do 2 2 32 ”32 32 =Y,
dpPs 4,
do Ay Py + (733 4 233)Pss = 0,
dP4,1 4,
o /é;ipu =0, (1)
APy 4 42
do - /L3;1P311 — ;L3;2P3,2 = 0,
dP, ,
43 _ /Lg’fpil — ;uf:;P32 — /1;";1)313 = 0,
do ' ’ '
dP4,4 14,4
do‘ — /L3V2P372 = 0,
dPys 4 4,
W — /L3:§P372 — )L3L§P3‘3 = 07
dPs 46
do - /L3:2P3a2 = 07
dr,;
do — /é;Py; =0.
In those equations, P,; is the probability of being in state S;; (i =1,2,3,4, j =1,2,. 7) and /1’“’ is the
failure rate from state S;; to S, ;. In Eq. (1) a 4-break cluster, i.e. state S4; (j =1, 2 ,7), 18 assumed as
the critical size for fracturing the composite, of which a state is called the absorblng state. In this situ-
ation the composite fractures if a 3-break cluster reaches either of states Ss1,S4z,...,Ss7; the sum of the
probabilities Py, P2, ..., Py7 is the composite-fracture probability, P
7
PU=3"P,; (2)
=1
From Eq. (2), seven equations including P, ; from the bottom of Eq. (1) are reduced to one equation as
dpH
K_}31P31_/L32P32_}%3P33—0 (3)

where 3; (j = 1,2,3) is defined as
431 —’131 +4 31 Jr/1317
A3 = 035+ 35 + 23 + 433 + 235 + A3, (4)
l33 = /1‘3‘; + A3‘3.

Here /5, (j = 1,2, 3) is the sum of all failure rates transiting from state S; ;. In other words 13 is the failure
rate transiting from state S;; to 4-break clusters. Thus, Eq. (1) can be reduced to seven differential equa-
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tions. We also found that the numbers of differential equations in cases of 5-break, 6-break and 7-break
critical clusters are reduced to 14, 36 and 118, respectively.

2.2. Determination of local load sharing factors

As mentioned earlier, the present study stochastically analyzes the fiber breaking process caused by local
load-sharing around clusters. This section describes how to determine local load-sharing factors. As shown
in Fig. 1, an initial fiber break (1-break cluster) causes stress concentration in six intact fibers adjacent to
itself. In this case, load sharing factors to intact fibers are all one and one-sixth because the load lost by the
break is transferred evenly to intact fibers. However, when a 2-break cluster occurs, the degree of the load-
sharing factor is different. Fig. 3(a) shows a schematic of a 2-break cluster. It is easily understood that intact
fibers 2 and 6 share a larger load compared to other intact fibers. Thus, two appropriate rules for estimation
of load-sharing factors were applied to the present analysis: one is the geometric local load-sharing rule and
the other is the mechanical local load-sharing rule (these are “glls” and “mlls”; intact fibers adjacent to
clusters are denoted simply as “intact fibers”.)

2.2.1. The GLLS rule

By this rule, load-sharing factors are estimated from cluster configuration and location of intact fibers
(Smith et al., 1983). If six fibers surrounding one broken fiber are intact, the load-sharing factor to each of
these intact fibers is 1+ 1/6=7/6 (=1.167), as mentioned above. Henceforth, the load sharing factor is
denoted as “Kj)”, and in general as “K;(;” (i is the broken fiber number, j is the intact fiber number). If
one of the six intact fibers is broken, the load sharing factor K, to the remainder is increased to one and
one-fifth. As seen in the example in Fig. 3(a), load sharing factors to intact fibers 1, 5, 6, 7, 9, and 10 are
1+1/5=6/5 (=1.200). In general, if i-fibers are broken around one broken fiber, the load sharing factor
Ki(6-1 to the (6 — i) intact fibers is 1 + 1/(6 — i). As seen in Fig. 3(b), the load-sharing factor to intact fiber
3is 1 + 1/(6-2) = 1.25 because fibers 11 and 13, adjacent to the broken fiber 12, are broken. If an intact fiber
is adjacent to two or more broken fibers, two or more load sharing factors are added to each other. For

@
‘.ﬁ.@
M @ G @‘*.

N_/ N/
@, @ @ @
/ N/ \ Ki5)=1.200/ 1.248 for Fibers 1and 5

@ @ Ki(s)=1.200/ 1.254 for Fibers 7 and 9

K1(5)=1.200/ 1.241 for Fibers 6 and 10
(5)=1.200/ 1.224 for Fibers 1,3, 5and 7 K14)=1.250/ 1.275 for Fiber 3

5)=1.200/ 1.219 for Fibers 4 and 8 Ki1(s),1(4)=1.450/ 1.378 for Fibers 2 and 4
5)=1.400/ 1.333 for Fibers 2 and 6 Kz(5),1(4)=1.650/ 1.483 for Fiber 8
(a) State S= (b) State Ss.2

Fig. 3. Local load-sharing factors of states S, and S3,, estimated by glls/mlls rules.
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example, because intact fibers 2 and 6 in Fig. 3(a) are adjacent to broken fibers 9 and 10, the load sharing
factor Ky(s) to fibers 2 and 6 is 1 + 1/5+ 1/5="7/5 (= 1.400). Intact fiber 8 in state S3, of Fig. 3(b) is adjacent
to broken ﬁbers 11, 12 and 13. There are four intact fibers adJacent to broken fiber 12, and five intact fibers
adjacent to broken fibers 11 and 13. The load sharing factor Kys) (s to fiber 8 is therefore 1 +1/5+1/4+1/
5=133/20 (=1.650). Thus, if the number of broken fibers i 1ncreases around intact fibers, load sharing factors
are increased. In this study, glls factors were estimated for all configurations up to 6-break clusters.

2.2.2. The MLLS rule

In this rule, load-sharing factors are estimated from mechanical analysis. This study employs shear-lag
analysis for their estimation; in this analysis, a shear-carrying matrix connects tension-carrying fibers. The
force equilibrium equation is thus given as

d uk Z ) =0, (5)

where u;, is the displacement of fiber £ and u,ij) is the displacement of fiber j (j = 1,2,...,6); each of them is
hexagonally-placed around fiber £. Extensional stiffness of the fiber is E4; Gh is shear stiffness of the matrix,
whereas d; is the distance between fibers. According to Hedgepeth and Van Dyke (1967), the load py,
displacement u;, and coordinate x are non-dimensionalized as

Pk :ka, Uy = pv/ df/EAGhU[“ X = \/EAdf/th, (6)

where L;, U, and ¢ are non-dimensional variables for p;, u; and x, respectively. Variable p represents an
applied load at infinity. From these non-dimensional variables, Eq. (5) is rewritten as follows:

—= > WU -u)=o. (7)
s

Eq. (7) is the non-dimensional force equilibrium equation. Because Eq. (7) is applied to all broken fibers in
a cluster and intact fibers adjacent to it, this equation can be expressed as simultaneous ordinary differential

equations:

{f—g}+rA]{U}={0}. )

For instance, the matrix [4] and displacement {U} for state S;, are given as

[—3 1 1 1
=3 1 1
-4 1 1 1
-3 1 1
—4 1 1 1
-3 1 1
[4] = -3 1 1
-3 1 1
=5 1 1 1 1
-3 1
-6 1
Sym. -6 1
i 6
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and
{U} = {Ula U2a ey U13}-
By introducing a regular transform, {U} = [Q]{V'}, Eq. (8) is rewritten as

d*v
of G | + gl = (o ©)
Multiplying [Q!] to both sides of Eq. (9) yields
[} viormam = {5}~y = o) (10)
d& d& ’
where [0] '[4][0] is a diagonal matrix in which eigenvalues u,, ft,, . . . , ;3 are components. [Q] is a matrix in

which column components are equal to eigenvectors corresponding to the eigenvalues. Eq. (10) is a group
of independent ordinary differential equations, so that each of the equations can be solved independently.
Thus,

(U@} = {00+ Y la) e ()
and |
(L) = {‘;—‘g} 1= Glayme (12)

where {L} = {L,L,,...,L;3} and C|,C,,...,C; are constants. Boundary conditions to obtain Eqgs. (12)
and (13) are given as follows:

L) =1 (k=1,2,...,13) (13)
and
U1(0) = U,(0) = U3(0) = -~ = Ujp(0) =0

L1 (0) = L12(0) = L13(0) = 0. (14)

Constants Cy, Cs, ..., Cj3 were obtained from Eq. (14). By substituting & = 0 into Eq. (12), mlls factors are
calculated as

wor={5} =1-Scthm (13

In Fig. 3, mlls factors are also shown. It should be noted that the mlls rule estimates different load-sharing
factors to fibers 1, 3, 5, and 7 and fibers 4, 8 in Fig. 3(a), and fibers 1, 5, fibers 7, 9 and fibers 6, 10 in Fig.
3(b); those all indicate the same factors under the glls rule. This is because fibers 1, 3, 5, and 7 are more
closely placed to 2-break clusters than fibers 4 and 8 in state S,; also, fibers 9 and 7 are more closely placed
to 3-break cluster than fibers 1, 5, 6, and 10 in state S3,. Thus, we obtained from mlls rule three and seven
different load-sharing factors in states S, and S », respectively. In states S;; and Ss 3, three and two different
load-sharing factors were obtained. As shown in Fig. 1, state S, generates three different 3-break clusters;
states Ss, S3, and S35 generate three, six and two different 4-break clusters. That is to say, the number of
different mlls factors agrees with the number of fiber breaking paths without rotated and reflected cluster
configurations. Mlls factors were calculated for all configurations from 1-break to 6-break clusters. The
results showed that, in all cases, the number of different mlls factors agrees with the number of fiber
breaking paths. Another interesting feature derived from the mlls rule is that, whereas mlls factors become
larger than glls factors for K sy (fibers 1, 5, 6, 7, 9, and 10) and K4 fiber 3) in state S;,, mlls factors become
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smaller for Kj(s) 4 (fibers 2, 4) and Kys) 14) (fiber 8). The maximum difference between glls and mlls factors
is (1.650-1.483 =) 0.167 at Kys)1(4) Difference between glls and mlls factors becomes larger as cluster size
increases. Glls and mlls factors giving the maximum differences were 1.900/1.620 for one intact fiber sur-
rounded by four broken fibers in state Sy ¢, 2.150/1.786 for one intact fiber surrounded by five broken fibers
in state Ss,9, and 2.500/2.009 for one intact fiber surrounded by six hexagonally-placed broken fibers in
state S¢77. In the local load-sharing rule, only intact fibers adjacent to broken fiber(s) share lost load(s), so
sums of glls and mlls factors must be equal. Therefore, it is proven that the glls rule generates a larger
difference between load-sharing factors in each state than the mlls rule.

2.3. Analytical solution for probabilities of being in states

The next problem of interest is how to derive the failure rate. In this problem, first, a statistical distri-
bution of fiber strength must be assumed. We assume here that the statistical distribution obeys the fol-
lowing two-parameter Weibull distribution function

myg

P(Xga)—F(a)lexp{ (i) } (16)
g9

In that equation, X is fiber strength, F (o) is the cumulative probability at stress o, and m; and oy are the

Weibull’s shape and scale parameters, respectively. The failure rate A(c) of this distribution function is

given as

; mfo.mffl

_ . 17

o) =" (17)

This failure rate should be given to transition Sy — S; because there is no fiber break at an initial loading

stage; therefore, Jy(l, = (o). However, 1-break cluster brings the effect of local load-sharing. That is, at the

transition from S; to S,,

7 = 64(Ki0) = 6Kl ' A(0) = W2(0). (18)

The figure “6” of Eq. (18) means that there are six fiber breaking paths at this state transition because there
are six intact fibers around 1-break. At the transition from a 2-break to 3-break cluster, the total number of
paths is eight, but the apparent number of fiber breaking paths without rotated and reflected cluster
configurations is three (henceforth, we shall call the number without rotated and reflected cluster con-
figurations the “apparent” number). In these eight paths, breaks of fibers 4 or 8 in Fig. 2(a) generate state
S51. Breaks of fibers 1, 3, 5 or 7 generate state S;,, and breaks of fibers 2 or 6 generate S;3. Thus, failure
rates for 3-break clusters are given as

' =20(Kis0) = 2K]5 g (o) = ' 4g o),

3% = 434(Kys)0) = 4K 2g(0) = 157 4y (), (19)

57 = 224(Kas)0) = 2K 24 (0) = g ().
By the mlls rule, first and second load-sharing factors Ky of Eq. (19) differ as shown in Fig. 3(a); but, for
simplicity, the same notation is used here. At the transition from a 3-break to a 4-break cluster, failure rates
from S;, are exemplified below. That is, breaks of fibers 6 or 10 in Fig. 3(b) generate state S4,. Breaks of
fibers 2 or 4 generate state S, 3, breaks of fibers 1 or 5 generate S, 4, and breaks of fibers 7 or 9 generate Sy.

Breaks of fibers 8 and 3 generate S, 5, and S, 7, respectively. Thus, the total number of these paths is ten, and
the failure rates are as follows:
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= 27(Ki(5)0) = 2K 15 ' 2g(0) = h3520(0),
2‘3=2& (Ki5)10)0) = 2K 14y %0(0) = 133 4(0),
i35 = Z/IO(Kus)a) = 2K7(5) I;VO(G) = h3324(0),

A o (20.1)
155 = Jg(Kas) 10 0) = Kafs) gy 20(0) = H3324(0),

235 = 204(Kys5)0) = 21r<'”f-1;v1 o(0) = h352(0),
= Jy(Ki@0) = K";‘ﬁ Ao(0) = h3324(0).

Because the total number of paths from S, to S;; is four as in Eq. (19), the total number of paths from 2-
break to 4-break clusters through S;, is (4x10=) 40. Estimated easily, transitions from S;; and S;; give
failure rates as

751 = 20(Ki(5)0) = 2K 24 (0) = hi31/5(0),
731 = 420(Ki519) = 4K g(0) = hyig(0), (20.2)
A3:1 = 4/10( 1(5),1(4)0) = 4K1nzr5;,¥(4)/1(1)(0) = h;‘;‘fié(a)
and
733 = 625(Kiwy0) = 6K 74 (0) = hi33/4(0),

e (20.3)
235 = 37( 2(4)0) = 3K5, 2 (0) = 3 24(0).

Although the number of failure rates, i.e. the apparent number of fiber breaking paths as seen in Fig. 1 is
11, the total number of fiber breaking paths at the transition from 3-break to 4-break clusters is 29. This is
because the numbers of intact fibers in states S;;, S;, and S35, are 10, 10 and 9, respectively. Table 1 shows
the number of fiber breaking paths from 2-break to 4-break clusters. As seen in this table, there are 78 paths
from 2-break to 4-break clusters; state S;, is the most probable state of the seven 4-break cluster configu-
rations. At the transition from 4-break to 5-break clusters and the transition from 5-break to 6-break
clusters, similarly to the above, all fiber breaking paths were considered in estimating failure rates. Details
are omitted in this paper, but readers can refer to transitions from Z; (j =1,2,...,7) indicated in pa-
rentheses regarding fiber breaking paths to 5-break of Fig. 2. When Egs. (18)—(20) are substituted into Eq.
(1), probabilities of being in states, Py, P, P, Ps; (i=1,2,3) and Py; (I =1,2,...,7) are obtained analyti-
cally as

P() = exp(—ho/lf), (211)
Table 1
Number of fiber breaking paths from a 2-break cluster to a 4-break cluster
/ S4‘] 5472 S4,3 S4‘4 S4,5 S4,6 S4 7 Number of fiber
(I, =12) (Iy=12) (I, =11) (I, =12) (I, =10) (I, =12) (Iy =12) breaking path
Sz—>S3‘] 2x2 2x4 2x4 — — — — 20
(Frequency 2)
S, — Ss, — 4x2 4x2 4x2 4x1 4x2 4x1 40
(Frequency 4)
S, — S35 - - 2x6 - 2x3 - - 18

(Frequency 2)
Frequency (%) 4(5.1) 16 (20.5) 28 (35.9) 8 (10.3) 10 (12.8) 8 (10.3) 4 (5.1) Total 78

/4 1s the number of intact fibers adjacent to four broken fibers.
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i
P, :(,1);,(1)2 M’ (21.2)
j=0 H/]:jé(]) (hj hk)
2 —_— .
P, :héhiz EXp(—h/Af)7 (21.3)

. —hA
Py = (_1)h(1)hfh§l M (i=1,2,3), (21.4)
j=0 szo (hj - hk)
k#j
Py = C) + W2 ! ex}’l(—h/lf) (1=1,2,3 fori=1, [=2,3,4,56,7 fori=2,
&5 T, Oy — i)
k#j
[=3,5 fori=3), (21.5)

where A; = (a/0y)™, j corresponds to the state subscript, e.g. j =1 for S; and j = 3,2 for S35, and C; is
a constant of integration. From Eq. (3) fracture probability P caused by 4-break cluster formation can
be obtained as

1
’ hA hA
414k hzh”hmzy hih fh”hnzexfz—f)
]Ohnko(hj_hk) hnko(hj_hk)
k#j k#j

33
: exp(—h;Ar)
+ W21y by 5 § =
I (=)

k#j
3 ; 3 exp(—h;Ar)
e R Ry Y
Zl 0 ,ZO h H3kt . (l’l _ hk) . (22>
= k#j

Some constants used in Egs. (21) and (22) are
ho=hi(=1), h=h, h=h"+nB>+n" (23.1)
hay = hyy + 3+ B33, hao =55+ B3+ W35+ hys + W3S+ B35, has = B33 + b33 (23.2)
Egs. (21.1)—-(21.4) and (22) were solved under initial and converging conditions as follows:
Ph=1 and P=P, =Py, =P;,=P;3=0 foro=0, (24.1)
PY =1 foro— oo, (24.2)

In the first portion of Eq. (22), second, third and fourth terms are related with probabilities transiting from
states S 1, S5, and Ss 3, respectively. That is, because these terms have constants /3 5, h3, and 43 5 denoted as
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Eq. (23.2), respectively, it is inferred that all fiber breaking paths from Ss; to S, ; are taken into account for
Eq. (22).

It is relatively simple to obtain fracture probabilities Pl'l, P2 P13 (see Appendix B), but more difficult to
obtain fracture probabilities PP, P, Pl compared to P. The present study, however, attempted to obtain
solutions PPl, Pl PUl by accounting for all fiber breaking paths to each critical cluster. For instance,
fracture probability PP is given as (see Appendix C)

PI=1+(-1°Y" % hohthy' hy ' hy 42 _oxplhdn) (25
=14+ (- 01772 7t3,1 Ttam m 3
) w1 Oy = ) )

=1 m J=0 =0
k#J

where
M=3 and m=1,2,3 forl=1,
M=7 and m=2,3,4567 forl=2,
M=5 and m=3,5 forl=3.

Solutions of fracture probabilities P and P"! are shown in Appendix D. Fracture probabilities as a result
of critical clusters of more than seven breaks were not analyzed here because counting cluster configura-
tions and fiber breaking paths for more than seven breaks was beyond the author’s capability. However, as
described in the next section, we approximate fracture probabilities resulting from more critical clusters,
using a one-state birth process. This concept was inferred from the negligibly small difference between glls
and mlls fracture probabilities.

3. Results and discussion
3.1. Fracture probabilities resulting from critical cluster formations

Fig. 4 shows fracture probabilities P! to PI”) vs. dimensionless stress o/a, in a Weibull probability scale,
predicted from the proposed model (henceforth, this model is denoted as the “branching process model”).
Fracture probabilities, except for P!l were calculated by substituting glls and mlls factors. The Weibull
shape parameter, ms, for fiber strength was given as 5.0 with reference to many experimental results (Goda
and Fukunaga, 1986). The result shows that, as cluster size increases, distributions of fracture probabilities
indicate a larger slope and shift to a higher stress region. A point of interest in Fig. 4 is the surprising
agreement between distributions of glls and mlls fracture probabilities, despite the fact that both these
factors are quite different. To find precise differences between both fracture probabilities, numerical values
of PP, PPl and P are shown in Table 2. There is a slight difference between both fracture probabilities at
lower dimensionless stress. This is because the glls rule yields higher load-sharing factors in a local area in
which broken fibers are concentrated, as mentioned earlier. However, we consider that the difference may
be neglected in discussing composite strength in a wide probability-scale as in the present study. Also
solutions obtained from smaller and larger Weibull moduli, i.e. my = 2.5 and 10, showed agreement be-
tween glls and mlls fracture probabilities, though the figures are omitted. Slope of the distribution of
fracture probability corresponds to the amount of Weibull shape parameter; it is also related to strength
reliability of materials. That is, a larger Weibull shape parameter gives a more reliable strength for ma-
terials. Each slope of distributions of fracture probabilities was numerically calculated. Results are shown
in Fig. 5, in which only slopes of distributions of glls fracture probabilities are indicated. The slopes are
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Fig. 4. Fracture probabilities from 1-break to 7-break critical clusters (by the branching process model, m; = 5).

Fracture probabilities derived from exact solutions by glls and mlls, and approximation by ells

a/oy  Fracture probability PP Fracture probability PI° Fracture probability P
Exact solu- Exact solu- Approxima-  Exact solu- Exact solu- Approxima-  Exact solu- Exact solu- Approxima-
tion by glls tion by mlls  tion by ells tion by glls tion by mlls  tion by ells tion by glls tion by mlls  tion by ells
0.01 3.728x107% 3.651x107% 3.618x107% — - - - -
0.02 1.222x107%* 1.196x107>* 1.186x1072* — - - - -
0.05 1.138x107"® 1.114x107'® 1.104x107"® 7.166x1073" 6.188x 1073 5.837x1073° — - -
0.1  3.728x107™ 3.651x107"* 3.618x 107 2.404x1072% 2.076x 10722 1.958x 102> 2.388x 1073 1.524x10°% 1.292x10-%°
0.2 1219%107° 1.193x10™° 1.183x10™° 8.024x107" 6.930x 10715 6.537x 107" 8.131x1072° 5.192x 1072 4.405x10~%°
0.3 5.246x1077 5.139x1077 5.093x1077 1.953x107'% 1.690x 1071° 1.595x107'° 1.113x10""3 7.150x 10~ 6.079x 10~
0.5 8.902x10™* 8.744x107* 8.677x10™* 4.213x107> 3.727x 107> 3.548x10~° 2.857x10° 1.987x107¢ 1.733x107°
0.8  1.725x107' 1.717x10~" 1.713x107" 1.295x107" 1.262x10~" 1.249x10~" 1.063x10~" 9.994x10~2 9.737x 1072
1.0 5.746x107" 5.741x107" 5.739x107! 5.495x107! 5474x 107" 5.465x107" 5350x107" 5.306x107" 5.287x107!
1.2 9.040x107" 9.039x10°" 9.038x10~" 8.978x10! 8.978x10~" 8.976x10~" 8.950x 10! 8.940x10~" 8.936x 107!
1.5 9.994x107" 9.994x 107" 9.994x107! 9.994x107! 9.994x 10~" 9.994x107" 9.994x 10! 9.994x10~" 9.994x 107!

constant until around ¢/a, = 0.3; they then approach five, the slope of P!, In other words, the slope of P!
(i=2,3,...,7), m, is given obviously as

m. =1 X ms.

(26)

This relation is also seen in the result of a two-dimensional fiber array (Goda, 2001). Thus, the proposed
branching process model demonstrates without using any power law function that Eq. (26) is an essential
feature in strength reliability of the hexagonally-placed fiber composite.
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Fig. 5. Slopes in Weibull probability scale, estimated numerically from distributions of fracture probabilities PP to P (by the
branching process model, m; = 5).

As mentioned in Section 1, a lower tail approximation model for fracture probability was proposed in
the model of Smith et al. (1983), in which a power law function was used for lower tail behavior of the
Weibull distribution. In that model, a multiplication rule is applied for each fiber breaking process, and the
fracture probability is obtained from the sum of all possibilities of processes. That is, fracture probability
P of the composite at stress o is given as PX ~ di(o/6,)*”, where k is the number of broken fibers included
in a critical cluster that fractures the composite. Fig. 6 shows results for glls fracture probabilities for that
model and the present model. Whereas solutions yielded by the present model show P!l > PP > ... > pl7],
the Smith’s distribution behaves as a broken line with plural nodes. Present distribution P! behaves with
the same slope as the Smith model, but tends to be in a higher stress region. Because the upper tail of the
Weibull distribution is not accounted in their model, deviation between these two distributions may be
inferred from upper tail behavior. Mahesh et al. (2002), considered the importance of the upper tail of the
Weibull distribution through Monte-Carlo simulations, and noticed that at small Weibull moduli. They
considered that the upper tail plays a central role in determining composite strength. Therefore, the present
study is intended to clarify quantitatively how the upper tail is related with composite strength. Such
elucidation will support future work.

As mentioned earlier, the composite in this study is a unit of a chain-of-bundles, each of which is as-
sumed to be independent both statistically and structurally. If this composite has the size of actual com-
posites, the composite strength must be determined by the largest critical cluster of all units. According to
the weakest link rule, the distribution function HEN of composite strength is given as (Harlow and Phoenix,
1981a,b)

Hypy = 1= {1 = Py, (27)

where N is the number of fibers and M is the number of bundles. Therefore, MN is equivalent to the
composite size. It is found from Eq. (27) that HEN is a lower tail of P and behaves linearly with slope m, in
a Weibull scale. This fact implies that a larger size of critical clusters gives a more reliable composite

strength, as is often noted (Smith et al., 1983; Phoenix and Smith, 1983).
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Fig. 6. Comparison of the branching process model with the characteristic distribution function W (x) of Smith et al. (1983).

3.2. Approximate model by one-state birth process

The branching process model showed that glls and mlls fracture probabilities are almost identical despite
the fact that glls factors vary more largely among intact fibers than mlls factors. This means that such
variation in load-sharing factors does not significantly affect the difference between fracture probabilities.
From this fact, it may be inferred that, even if all load-sharing factors around a cluster are equal, the
fracture probability is not so significantly different from fracture probabilities predicted by the branching
process model in Section 3.1. Thus, we propose below an approximate model for predicting fracture
probabilities resulting from critical clusters of the hexagonally-placed fiber composite. This model is based
on two assumptions:

(1) All intact fibers adjacent to broken fibers possess an even load-sharing factor. That is, the load-sharing
factor is given by even local load-sharing rule (the “ells” rule).
(2) The number of cluster configurations is only one at each i-break cluster.

From these assumptions, the fiber breaking process can be expressed as a one-state birth process without
any state branching. That is, the space of discrete states is S - Sy — --- — S; — --- — S, — S,;; where

subscript i indicates the number of broken fibers. This process is satisfied with the following simultaneous
differential equations:

dpy

do
dp
d—G‘ — AP+ 2P =0,

+ 24Py = 0,

: (28)
P

df, _ X P+ 2B, =0,
do

dPn-H
do

— 2P, =0.
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In those equations, /lf“l (i=0,1,2,...,n) is a failure rate at the transition from S; to S;;; and given as
A =Ti(Ko), (29)

where /; is the average number of intact fibers adjacent to broken fibers in an i-break cluster (see Appendix
E). This number may be called the “closed-loop” number because intact fibers enclose the cluster with a
loop-like shape. Thus, the load-sharing factor K; is given as

1

Solutions of Eq. (28) were obtained inductively as

n " A
n - J j
Pl =14 (=1 II T exp(—h" Ay), (31)
where hfrl is a constant given as: h§+l =1 jKj'-"f’1 (j=1,2,...,n). Initial and converging conditions used
here are:

P=1,P=0 (i=12,....,n) foro=0, (32)
P, =1 foro— oc.

Fig. 7 shows fracture probabilities P/ (i =1,2,...,7) approximated from Eq. (31). Distributions of
fracture probabilities indicate a larger slope and shift to a higher stress region as cluster size increases. This
behavior shows the same tendency as that of fracture probabilities predicted by the branching process
model in Fig. 4. In Table 2, numerical values of fracture probabilities are shown. Remarkably, approximate
values fairly approximate the solutions of mlls fracture probabilities. Approximate values for other Weibull
moduli, i.e. my = 2.5 and 10, were also analyzed to verify agreement with the exact solutions proposed here.
Those results are shown in Table 3. In m; = 2.5 the approximation values P? and P agree very well with
the exact solution of glls fracture probability. Whereas the values P83 obtained from m; = 10 well-predict
the exact solution, the values P”! from m; = 10 are double figures that are smaller than the exact solution in
a low probability region. Thus, it is concluded that validity of the proposed approximation model is limited
to the case of small Weibull moduli.

3.3. Fracture probabilities resulting from critical cluster formation of more than seven breaks

We found in the preceding section that the proposed approximate model by one-state birth process is
quite effective in analyzing fracture probabilities of critical cluster size for n + 1 <7, especially for small
Weibull moduli of fiber strength. This section further predicts fracture probabilities for cluster sizes of
n+ 1> 7. This analysis requires a method to estimate the closed-loop number of fibers. According to
Phoenix and Beyerlein (2000), the number of broken fibers in a cluster is proportional to the cross-sectional
area of a circle if cluster growth assumes a circular shape. We assumed in the above that the lost load
caused by fiber breakage is redistributed evenly onto the closed-loop intact fibers, which may be propor-
tional to the circumference. Therefore, the closed-loop number of fibers is one order less than the cross-
sectional area, i.e. [; o (n+ 1)1/ *. Fig. 8 shows the relation between /; the average closed-loop number of
fibers, and square root of cluster size (n + 1)1/ *. The relation is almost linearly proportional with the slope
of 5.77 as

12577 x (n+ 1) (33)
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Fig. 7. Fracture probabilities due to various sizes of critical clusters (by the approximate model, m; = 5).
Table 3
Fracture probabilities derived from exact solutions by glls and approximation by ells (m; = 2.5 and 10)
alog mp=2.5 mp = 10
jEl pll pBl Pl
Exact solu- Approxima-  Exact solu- Approxima-  Exact solu- Approxima-  Exact solu- Approxima-
tion by glls  tion by ells tion by glls  tion by ells tion by glls  tion by ells tion by glls  tion by ells
0.001 4.463x1072 4.455x1072 - - - - - -
0.002 8.079x107%  8.065x10°% - - - - - -
0.005 7.797x10°Y7  7.783x 10717 - - - - - -
0.01 1.411x107"% 1.409x 107 - - - - - -
0.02  2.554x10712  2.550x 1072 4.127x107%  4.159x107% -~ - - -
0.05 2459x107°  2454x107°  3.775x1072 3.804x10°2 - - - -
0.1 4394x1077  4.386x1077  6.778x107  6.831x1071  2.894x 1072 2.387x107%® - -
0.2 7.401x107°  7.388x107°  1.051x10°  1.059x107°  3.108x10°" 2.562x10°" - -
0.3 1.332x107*  1.330x107*  8.716x1077  8.785x1077  5958x10™“ 4.913x107" 7.564x107% 1.072x 102
0.5 3476x 1072 3.472x 1072 1.572x1073  1.584x1073  2.632x1077  2.177x1077  1.542x 107"' 3.237x 107"
0.8 2.920x 107! 2.919x107'  1.482x107'  1.487x107!  5458x1072  5.231x1072  4.530x 1072 3.514x 1072
1.0 5347x107"  5346x107"  4.217x107"  4.222x107"  6.108x 107! 6.096x10""  6.063x 10"  6.008x 107"
1.2 7.387x 1070 7.386x 107! 6.743x107!  6.746x107'  9.978x107!  9.978x107!  9.978x 107! 9.978x 107!
1.5 9.196x107"  9.195x10°"  8.997x10"'  8.998x10~! 1.000 1.000 1.000 1.000
2.0 9.956x 1071 9.956x 107! 9.945x10™'  9.945x10°!  1.000 1.000 1.000 1.000
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Fig. 8. Relation between the numbers of closed-loop intact fibers and broken fibers in a critical cluster.

From this relation, we can predict not only /; around critical clusters with more than seven breaks, but also
fracture probabilities resulting from clusters greater than seven breaks. Thus, Fig. 7 includes dotted lines
that show fracture probabilities P, P31 pR20l pB0 and P! predicted from Eq. (31). As cluster size in-
creases, distributions of fracture probabilities shift to a higher stress region and tend to converge to a
master-like distribution. The slopes m, of these distributions were also calculated; results are shown in Fig.
9. That figure shows that distributions of P! PI'Sl and PP change from slopes of approximately 50, 75,
and 100, respectively to 5. This means that a 20-break critical cluster conforms to the relation of Eq. (26).
On the other hand, distributions of P*% and P*’! do not correspond to slopes of 150 and 200, respectively.
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Fig. 9. Slopes in Weibull probability scale, estimated numerically from distributions of fracture probabilities P! to P (by the
approximate model, m; = 5).



6832 K. Goda | International Journal of Solids and Structures 40 (2003) 6813-6837

This is because fracture probabilities less than 1073 were not calculated exactly because of computer
limitations. As seen in Figs. 7 and 9, however, the lower tails of distributions PP% and P exhibit a highly
reliable strength in evaluating a scale effect of H, ,@N There may be a better predictive method for the closed-
loop number of fibers than the above, as seen in Mahesh et al. (2002), but we consider that behavior of the
approximated distributions mentioned above does not change substantially.

4. Conclusion

A Markov process model was applied to a unit of the chain-of-bundles model with fibers packed in a
hexagonal array to obtain an analytical solution for the fracture probability of a unidirectional fiber
composite. This model subsumed that a group consisting of fiber breaking points, a so-called cluster,
evolves with increased stress; the cluster evolution branches because it follows different fiber breaking paths.
It was further assumed that the cluster fractures the composite without any stress increment if it reaches a
critical size. Next, we constituted all state transitions consisting of fiber breaking paths from 1-break to 7-
break clusters. Finally, we solved analytically simultaneous differential equations obtained from transitions.

Results showed that distributions of fracture probabilities resulting from 1-break to 7-break critical
clusters indicate a larger slope in a Weibull probability scale as cluster size increases. Then, the slope is
given as follows: m. =i x m¢ (i, the number of broken fibers in a cluster; m. and m;, Weibull shape pa-
rameters for fracture probabilities of a critical cluster and fiber strength, respectively). Although this re-
lation was found in the model of Smith et al. (1983), an important finding of this study is that the relation is
obtained analytically in the branching process model.

In the branching process model, glls and mlls fracture probabilities agreed approximately, even though
the former factors were calculated in a local area to be much larger than the latter. The author infers that
variation in the load-sharing factor does not significantly affect the difference between fracture probabilities.
Next, we proposed an approximate model for predicting fracture probability using a one-state birth pro-
cess. The approximate model predicted very similar values to those predicted from the above branching
process, especially for small Weibull moduli of fiber strength.

The square root of the number of fiber breaks in a cluster was approximately proportional to the average
number of intact fibers. When this proportional relation is applied to a critical cluster of more than seven
breaks, the proposed approximate model still maintains the relation, m. = i X m¢, up to a 20-break cluster.

We conclude that the branching process and approximate models proposed in this study contribute
effectively to prediction of fracture probability of a unidirectional fiber composite.

Appendix A

Table 4 shows all configurations of 6-break clusters. Each configuration is expressed from six fiber
numbers; their positions are shown in Fig. 10.

Appendix B
Fracture probability Pl is equal to the statistical distribution of fiber strength. That is, P!' is given as the
Weibull distribution function of Eq. (16) as
PV =1 —exp(hoAy). (B.1)

When a 2-break cluster becomes a critical cluster, differential equations of the fiber breaking process are
composed of Egs. (1.1), (1.2) and (1.3). But, the term (}é"l + /l;"z + /13’3)P2 of Eq. (1.3) is not accounted for
because state S, does not transit to a 3-break cluster. Thus, fracture probability P12 is given as



Table 4

Configurations of 6-break clusters (six numbered fibers on each state are broken)
State Cluster State  Cluster State Cluster State  Cluster State Cluster State Cluster
Se.1 1-2-3-4-5-6 Seo1 18-9-10-11-12-4  Sgq  1-2-3-11-19-27  Sge1  3-9-10-11-20-27 Sg7;  1-2-10-11-184  Sgg;  9-10-11-4-20-21
Se 1-2-3-4-5-13 S 9-10-11-12-4-19 Sg4  9-2-3-4-12-13 See2  3-9-10-11-18-20 Se7»  9-10-3-19-20-12  Sgg»  9-10-11-4-20-27
Se3 1-2-3-4-5-12 Se2s  9-10-11-12-4-20 Sg43  9-1-2-3-11-12 Sees  3-9-10-11-19-27 Sg73  9-2-3-11-12-5
Se4 1-2-3-4-5-11 Sea  9-10-11-12-3-19  Seas  9-2-3-4-12-20 Seesa  4-9-10-11-19-27 Se74  1-2-10-11-18-20
Se.s 1-2-3-4-12-13 Seos  1-2-3-4-10-12 Seas  9-1-2-3-11-19 Sees  1-2-10-11-4-5 Se7s  9-10-3-4-19-20
Se.6 1-2-3-4-12-21 Se26  1-2-3-11-12-13  Sga6  1-9-10-11-20-21 Sges  1-2-10-11-4-20  Ss76  3-9-10-19-20-26
Se.7 1-2-3-4-12-20 Ser7  1-2-3-11-12-5 Seq7  1-9-10-11-20-27 Sg¢;  9-2-3-4-11-19 Se77 2-3-9-11-18-19
Ses 1-2-3-4-11-12 Sens  1-2-3-11-12-21  Sgas  1-9-10-11-19-20 Sges  1-2-10-11-20-21 Se75  9-2-3-4-11-12
S6.9 1-2-3-4-11-20 Sex9  1-2-3-11-12-20  Sg49  1-9-10-11-18-20 Sgeo  1-2-10-11-20-27 S¢79  9-10-11-4-18-20
Se10  1-2-3-4-11-19 Ses0  1-2-3-11-12-19  Sgsop  1-9-10-11-17-20 Sg7  9-10-19-20-12-4 S50  9-10-11-4-20-28
Senn 1-2-3-4-10-11 Ses1  1-2-3-11-20-21  Sgs5;  1-9-10-11-19-27
Se1n  1-2-3-4-10-19 Sex»  1-2-3-11-20-27  Sgs»  1-9-10-11-19-26
Se13  9-2-3-4-5-13 Seszs  1-2-3-11-20-19  Sgs3  1-2-3-9-10-18
Se1s  9-2-3-4-5-12 Sesa  1-2-3-10-11-12  Sgss  2-9-10-11-18-19
Se1s  9-1-2-3-4-11 Se3s  1-2-3-10-11-20  Sgss  2-9-10-11-20-21
Se1s  9-10-11-12-5-21  Sg36  1-2-3-10-11-19  S¢s¢  2-9-10-11-20-27
Se17  9-10-11-12-5-20 Sg3;  1-2-3-10-11-18  S¢s7  2-9-10-11-19-20
Seus  9-10-11-12-5-19  Sg3s  1-2-3-9-10-11 Sess  2-9-10-11-18-20
Se1o  9-10-11-12-5-18 Sg39  1-2-3-11-19-18  Sgs9  2-9-10-11-17-20
Se2  17-9-10-11-12-5 Sgq9  1-2-3-11-19-26  S¢q0  3-9-10-11-19-20
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Fig. 10. Numbered fibers in a hexagonal array.

1
“hAy)
PR =1+ (=1)*hln, _exp(=hyAr) (B.2)
,; h Hlﬁo (hj — )
7

When a critical cluster is formed by a 3-break cluster, the differential equations comprise Egs. (1.1)—(1.6).
However, the terms including P;;, P;, and Ps3 of Egs. (1.4)—(1.6) are not accounted for, as mentioned
above. Therefore, fracture probability PPl is given as

2
—hyAy)
PO = Py, Pyt Py = 1+ (1) R, S —SPEAAD
| =0 hy Hzﬁg (hj = h)
J

(B.3)

Appendix C

The apparent number of fiber breaking paths transiting from a 4-break to a 5-break cluster is forty-five,
as estimated from Fig. 2. That is, the number of state S, to Ss; is four, i.e. i = 1,2, 3,4. Also, Sy, to Ss; is
12,1e.i=2,3,5,6,8,9,10,13,14,15,16,17, state S45 to Ss; is 10, i.e. i = 3,4,5,6,8,10,11, 12,15, 18, state
S44to Ss; is six, i.e. i = 5,15,17,19,21,22, state Sy 5 to Ss; is three, i.e. i = 5,6, 11, state Sy to Ss; is seven,
ie.i=6,8,16,18,19,20,21, and state Sy to Ss; is three, i.e. i = 9, 11,21. The constants ay; (j = 1,2,...,7)
are therefore given as

hy) = Zhij (i=1,2,3,4),
hay =Y hy5 (i=3,5,6,8,9,10,13,14,15,16,17),

hiy =Y h5 (i=3,4,56,810,11,12,15,18),

1

m,FZhj;; (i =5,15,17,19,21,22), 1)
h4,5=2h3g (i=5,6,11),

h4,6=Zhj;g (i=16,8,16,18,19,20,21),

haz =Y by (i=9,11,21).

Because the fiber breaking paths include rotated and reflected cluster configurations, the total number of
fiber breaking paths from a 4-break to a 5-break cluster increases to 293; the total number of fiber breaking
paths from a 2-break to a 5-break cluster increases to 888.
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Appendix D

Fracture probability P resulting from a 6-break cluster formation is given as

5,b
3 4M 5B " ’ exp(—h;Ar)
6 1 4 (1) hohihy Wy hynhsy - — T
P =1+ (-1) E E E o2 Tt Bamtsh 2 WL (h—he) (°
= m b = £=0 !

where
M=3 and m=1,2,3 forl=1,

M=7 and m=2,3,4,506"7 forl=2,
M=5 and m=3,5 forl=3

and
B=4 and b=1,2,3,4 form=1,
B=12 and b=2,3,4,5,6,8,9,10,13,14,15,16,17 for m =2,
B=10 and b=3,4,56,8,10,11,12,15,18 for m =3,
B=6 and b=15,15/17,19,21,22 for m =4,
B=3 and b=5,6,11 form=>35,
B=6 and b=06,8,16,18,19,20,21 for m =6,
B=3 and 5=9,11,21 form=7.

Fracture probability P resulting from 7-break cluster formation is given as

4M 5B 64 6.a exp(—h; Ag)
P =1+ (-1) iy Wy hShe > ——er T\
; ” ; ; =0 thé;Q (hj — hy)
J

where

M=3 and m=1,2,3 forl=1,
M=7 and m=2,3,4,567 forl=2,
M=5 and m=3,5 forl=23,
B=4 and »=1,2,3,4 form=1,
12 and 5=2,3,4,56,8,9,10,13,14,15,16,17 for m = 2,
=10 and b=3,4,56,8,10,11,12,15,18 for m = 3,
6 and b=15,15/17,19,21,22 for m =4,
=3 and b=5,6,11 form=2>5,
6 and b=06,8,16,18,19,20,21 for m =6,
3 and 5=9,11,21 form=7

6835
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and
A=4 and a=1,2,3,4 forb=1,
A=14 and a=2,3,506,7,8,13,14,16,17,18,19,20,25 for b =2,
A=13 and a=3,4,8,9,10,11,14,15,17,19,21,22,23 for b = 3,
A=7 and a=4,11,12,18,22,24 25 for b =4,
A=12 and a=38,11,34,35,36,37,38,48,57,60,63,78 for b =5,
A=6 and a=11,36,38,53,54,60 for b =6,

A=7 and a=14,32,42,44,50,59,78 forb =171,

A=13 and a=15,25,33,38,43,45,49,58,61,62,67,78,79 for b =8,
A=8 and a=16,23,50,63,79,80,81,82 for b =09,

A=13 and a=09,12,17,22,36,49,51,59,60,61,62,63,64 for b= 10,
A=7 and a=23,24,37,54,58,60,63 forb=11,

I
N

and a=22,54,57,62 for b =12,
and a=6,9,29,31,32,33,35,80 for b =13,
and a=19,31,46,47,48,49,50 for b = 14,
and «a = 18,21,29,36,48,51,52,55,56,57,58,59,79 for b =15,
and a=7,10,30,33,36,39,40,41,44,45,47,56,61,82 for b = 16,
and a=15,8,26,27,28,29,30,34,42,43,46,51,55,81 for b =17,
and «a=10,12,37,52,53,62,67 for b =18,
and a=11,27,41,43,52,56,65,66,69,70,71,72,73,78 for b =19,
and a = 39,45,54,67,70,72,75,77 for b = 20,
and a = 30,37,58,60,66,71,72,74,75,76,79,81,82 for b =21,
and a = 28,35,48,55,66,68,69,74 for b =22.

| (|
(93]

n
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|
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Constants &5, and kg, include all load-sharing factors on intact fibers around the 6-break cluster, similarly
to Eq. (B.1).

Appendix E

The numbers of closed-loop intact fibers at states S;;, S5, and S;; are 10, 10 and 9, respectively.
Transition frequencies of state S, to states Ss;, S3, and S35 are 2, 4 and 2, respectively (see Table 1). The
average number /; of closed-loop intact fibers may therefore be estimated as

7 _10x2410x4+9%x2 78
T 2+4+2 ~ 8
The “78” is the total number of fiber breaking paths from a 2-break to a 4-break cluster; the “8” is the total

number of fiber breaking paths from a 2-break to a 3-break cluster. Generally, the average number is given
as

=9.75.

7_ The total number of paths from (i — 1)- to (i + 1)-break
' The total number of paths from (i — 1)- to i-break




K. Goda | International Journal of Solids and Structures 40 (2003) 6813-6837 6837

Therefore, average numbers of closed-loop intact fibers on a 4-break to a 6-break cluster are obtained as

1, = 888/78 = 11.39,
Is = 11,488/888 = 12.94,
T = 165,734/11,488 = 14.43.
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