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Abstract

This paper proposes a strength reliability model based on a Markov process for unidirectional composites with fibers

in a hexagonal array. The model assumes that a group of fiber breaking points, a so-called cluster, evolves with in-

creased stress. The cluster evolution process branches because of various fiber-breakage paths. Load-sharing structure

of intact fibers around clusters was estimated from geometric and mechanical local load-sharing rules. Composites

fracture if a cluster achieves a critical size, so the model expresses a fracture criterion by setting an absorbing state.

Next, the author constituted a state transition diagram concerning cluster evolutions of 1-fiber to 7-fiber breaks and

analytically solved simultaneous differential equations obtained from the diagram. Results showed that, as critical

cluster size increases, slope of the fracture probability distribution is given in a Weibull probability scale as follows:

mc ¼ i� mf (i, the number of broken fibers in a cluster; mc and mf , Weibull shape parameters for fracture probabilities
of a critical cluster and fiber strength, respectively). This relation between mc and mf had been shown by Smith et al.
[Proc. R. Soc. London, A 388 (1983) 353–391], but the present study demonstrated it analytically without any lower tail

of the Weibull distribution used in that paper. In addition, the present model can be approximated by a one-state birth

model.
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1. Introduction

Composite materials reinforced with continuous inorganic fibers, such as carbon, silicon carbide, and
boron, are expected to be widely applied for mechanical and structural components because of their high

specific strength and rigidity, and excellent durability. Because such reinforcing fibers are generally brittle

and have a large scatter in strength, mechanical properties of composites have often been discussed from
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the viewpoint of materials reliability engineering. In particular, axial tensile strength of a unidirectional

fiber composite has been discussed from the vantage of probability theory (Rosen, 1964; Zweben, 1968;

Scop and Argon, 1967, 1969; Harlow and Phoenix, 1978a,b; Fukuda et al., 1981; Phoenix and Smith, 1983).

When the composite is tensile-loaded along the fiber-axis, some weak fibers are broken, but these breaks do
not cause the composite�s fracture immediately. As applied load increases, a group of fiber-breaks evolves
into a source of stress concentration, a so-called ‘‘cluster’’. In addition, axial stress acting on broken fibers

completely recovers in regions that are distant from their breaking points because of matrix shear function.

A length of twice the stress recovery region is often called ‘‘ineffective length’’ (Zweben, 1968; Harlow and

Phoenix, 1981a,b); this is a key parameter in modeling the composite. Broken fibers cannot sustain the

applied load within the ineffective length; therefore, just as with a bundle structure, the composite is

modeled as a chain connecting bundles to each other. This model is called the ‘‘chain-of-bundles model’’ or

the ‘‘Rosen model’’ (Zweben, 1968; Harlow and Phoenix, 1981a,b); it has often been used as a standard
model in predicting tensile strength of the composite. It should be noted that Harlow and Phoenix (1981a,b)

proposed a cluster evolution model, called recursion analysis, and gave a theoretical perspective to interpret

a size effect in composite strength. Further, Pitt and Phoenix (1983) improved recursion analysis to a new

stochastic model in which load-sharing fibers around clusters are given more realistically. Smith (1980) and

Batdorf (1982) each proposed their own model independently at nearly the same time. These two models

were identical and approximated recursion analysis of Harlow and Phoenix (1981a,b) by applying a power

law function to the multiplication rule. The author also applied the Markov process model to the chain-

of-bundles model and obtained an analytical solution for predicting fracture probability of the composite
(Goda, 2001). Thus, various stochastic models for prediction of composite strength have been developed

based on the chain-of-bundles model. These models are available mainly for prediction of tensile strength

or lifetime of a unidirectional composite with two-dimensional fiber arrays, but not of a unidirectional

composite with hexagonal fiber arrays. The latter is significant for practical use. To hexagonally-placed

fiber composites, an equal (or global) load-sharing rule (Harlow and Phoenix, 1978a,b; Curtin, 1991) can be

applied as an upper bound in strength; by that rule, the load lost by fiber breaks is considered to be evenly

shared among all intact fibers within the ineffective length. However, this study focuses on a stochastic

model on the basis of local load-sharing rule in which the load transferred from broken fibers is imposed
only upon the closest intact fibers. By this rule, the severest condition for the composite�s fracture is given
and a lower bound in strength or lifetime is predicted.

Reliability strength of the hexagonally-placed fiber composite, subject to two local load sharing

rules, was discussed in Smith et al. (1983). That study proposed a lower-tail approximation model for

distribution of fracture probability of the composite in which a power law function (Smith, 1980; Batdorf,

1982) is again applied to fiber strength. In the lower tail of the Weibull distribution, probability distri-

bution F ðrÞ is approximated as F ðrÞ � ðr=r0Þq, where q and r0 are the shape and scale parameters of
fiber strength, respectively. Then, fracture probability Pk of the composite at stress r is equal to the sum of
all possibilities of fiber breaking processes as Pk � dkðr=r0Þkq, where k is the number of broken fibers in-
cluded in a critical cluster which fractures the composite. Therefore the shape parameter of composite

strength is given as kq and dk is a scale effect parameter obtained from all possibilities transiting to the
critical cluster. Parameter dk was calculated for k6 7, but approximated for k > 7 by assuming a dominant
cluster configuration for each size because numbers of cluster configurations and fiber breaking processes

are extremely large. Their main results were: (1) the distribution of fracture probability of hexagonally-

placed fiber composite behaves similarly to that of a planar composite; (2) a hexagonally placed fiber

composite is stronger than a planar composite; and (3) two different local load-sharing rules, glls (geo-
metric local load sharing) and mlls (mechanical local load sharing), predict similar fracture probabili-

ties.

This study proposes a new stochastic model for analyzing distribution of fracture probability of the

hexagonally-placed fiber composite, using a Markov process model (Karlin et al., 1990), to develop the
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model proposed by Smith et al. (1983). The proposed model gives an exact solution of distribution

of fracture probability, in which the lower tail of the Weibull distribution used in Smith�s paper, a power
law function, is not applied; failure rate of the Weibull distribution is applied. However, two local load-

sharing rules used in the Smith model are still used in the present model. Fracture probabilities using the
two rules indicated almost identical values despite the fact that the two load sharing factors were quite

different, as in results obtained by Smith et al. (1983). This implies that distribution of fracture probability

of the hexagonally-placed fiber composite is not necessarily affected by individual variation in load-sharing

factors, but is rather affected by total magnitude of load-sharing factors. Finally, we conclude from this

result that a one-state birth process is approximately applicable for distributions of fracture probabilities of

k > 7.
2. Analytical procedure

2.1. State transition diagram by Markov process

The composite analyzed in this study is a unidirectional fiber composite with fibers placed in a hexagonal

array; their length is equivalent to the ineffective length, a unit length of the chain-of-bundles. This com-

posite is subject to a tensile load with a stress rate, a, along the fiber axis; each fiber evenly sustains the stress
at an initial loading stage. As stress increases, lower-strength fibers break first. Each fiber break gives a

stress concentration to intact fibers around itself. As the number of breaking points increases, a group of

breaking points is evolved to a source of stress concentration, i.e. a ‘‘cluster’’, which is able to fracture the

composite. It may be considered that, if the cluster reaches a critical size, the composite will be fractured
because of unstable extension of the cluster. Although various configurations of clusters on hexagonally-

placed fibers are generated, this analysis assumes that only intact fibers adjacent to breaking points are

broken at the same cross-section according to two local load-sharing rules, shown later, and counted as

structural elements of a cluster. As mentioned above, such a locally limited fiber breaking process must be

the most dangerous evolution process in evaluating the composite�s fracture; it gives a lower bound in
strength of the composite.

We consider here that the fiber breaking process is a stochastic process which is determined from the

relation between damage states at times t and t þ Dt. That is, whether the composite includes a large
number of broken fibers in the past or no broken fibers, the process is independent of past damage states.

The present damage state dominates subsequent damage states. Thus, a Markov process model was applied

to this process in which a damage state, i.e. a fiber breaking state, evolves temporally in a discrete state

space {S}. Fig. 1 shows the state transition diagram used in this study. In it, all possible paths transiting

from no fiber-break to four fiber-breaks are indicated (henceforth, no fiber-break and four fiber-break are

denoted as the ‘‘0-break cluster’’ and ‘‘4-break cluster’’, respectively; generally we will use the ‘‘i-break
cluster’’). A transition probability from a state to the next state is given as the product of a failure rate kmþ1

m

(Sm to Smþ1) and a stress increment aDtð� DrÞ. Although the probability of transition from state Sm is
described exactly as kmþ1

m Dr þ oðDrÞ, the term oðDrÞ approaches zero when Dr ! 0. Therefore, transition

probabilities are denoted below without the term oðDrÞ, which is a residual term showing the probability of
transition from Sm to Smþ2 or more. Thus, the transition probability from state S0 to state S1, i.e. the

probability that an intact fiber is broken in Dr from a stress r, is k10Dr. This broken fiber brings identical
stress concentration to each of the six intact fibers adjacent to itself. The transition probability from S1 to

S2, i.e. the probability that one of the six adjacent fibers is broken in Dr from stress r, is expressed as k21Dr.
This transition brings a series of two fiber breaks, i.e. the 2-break cluster, as shown in state S2. The 2-break

cluster imparts a stress concentration to each of eight intact fibers adjacent to itself, but the degree of stress
concentration is not equal because several intact fibers are obviously located more closely to the two broken



Fig. 1. State transition diagram of fiber breaking path to a 4-break cluster in a hexagonal fiber array.
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fibers than others. We count first the number of cluster configurations without differentiating rotation and

reflection of configuration because rotated and reflected configurations generate an identical load-sharing

factor to intact fibers. Thus, the fiber breaking process branches into three states at the formation of a 3-

break cluster, as shown in S3;1, S3;2 and S3;3 of Fig. 1. These transitions from 2-break to 3-break clusters also

follow three different failure rates, k3;12 , k
3;2
2 and k3;32 . Furthermore, 3-break clusters branch to more states at

the formation of 4-break clusters, as shown in Fig. 1. Numbers branching from states S3;1, S3;2 and S3;3 are

three, six and two, respectively, but the number of 4-break cluster configurations is seven, as shown in states

S4;1, S4;2, S4;3, S4;4, S4;5, S4;6 and S4;7 of Fig. 1. The number of paths transiting from 3-break clusters to 4-
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break clusters is, in total, 11; each of the paths also shows different failure rates. The number of paths

transiting from 2-break to 4-break clusters is also 11.

The number of 5-break cluster configurations further increases to 22, as shown in Fig. 2. Parentheses in

the figure show which 4-break states generate 5-break states. We understand from this figure that the
number of paths transiting from 4-break to 5-break clusters is 45; also, the number of failure rates is the

same. However, the number of paths transiting from 2-break to 5-break clusters is not the same. For ex-

ample, although state S5;1 is generated only from state S4;1 (the number of paths is one, given as
S2 ! S3;1 ! S4;1 ! S5;1), the number of paths from state S2 to state S5;2 is not two but three, because state

S4;2 is generated from S3;1 and S3;2. Furthermore, the number of paths from state S2 to S5;3 increased up to

six because state S4;3 is generated from S3;1, S3;2 and S3;3. Thus, the number of paths transiting from 2-break
to 5-break clusters increases to 80. The number of configurations at the formation of 6-break clusters was

82, as indicated in Smith et al. (see Appendix A). According to our count, the number of paths transit-
ing from 5-break to 6-break clusters was 214 and the number of paths from 2-break to 6-break clusters was

822.

In the Markov process model, an ordinary differential equation is obtained when taking Dr ! 0

for a relation between states at stresses r and r þ Dr. For example, the probability P0 of being in
state S0 is given as: Pr {state 0 at r+Dr}¼Pr {state 0 at r} Pr {no failure in (r; r þ Dr)}. The second
factor is just 1	 P0k

1
0Dr, as shown in Fig. 1. By passing to the limit as Dr ! 0, one obtains the first

equation of Eq. (1) shown later. When taking Dr ! 0 for all relations between states at stresses r
and r þ Dr in Fig. 1, the fiber breaking process is described by simultaneous ordinary differential equa-
tions as
Fig. 2. 5-break cluster configuration ((d) broken fiber and (
) intact fiber. The original state S4;j ðj ¼ 1; 2; . . . ; 7Þ before transition is
indicated in parentheses).
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dP0
dr

þ k10P0 ¼ 0;

dP1
dr

	 k10P0 þ k21P1 ¼ 0;

dP2
dr

	 k21P1 þ ðk3;12 þ k3;22 þ k3;32 ÞP2 ¼ 0;

dP3;1
dr

	 k3;12 P2 þ ðk4;13;1 þ k4;23;1 þ k4;33;1ÞP3;1 ¼ 0;

dP3;2
dr

	 k3;22 P2 þ ðk4;23;2 þ k4;33;2 þ k4;43;2 þ k4;53;2 þ k4;63;2 þ k4;73;2ÞP3;2 ¼ 0;

dP3;3
dr

	 k3;32 P2 þ ðk4;33;3 þ k4;53;3ÞP3;3 ¼ 0;

dP4;1
dr

	 k4;13;1P3;1 ¼ 0;

dP4;2
dr

	 k4;23;1P3;1 	 k4;23;2P3;2 ¼ 0;

dP4;3
dr

	 k4;33;1P3;1 	 k4;33;2P3;2 	 k4;33;3P3;3 ¼ 0;

dP4;4
dr

	 k4;43;2P3;2 ¼ 0;

dP4;5
dr

	 k4;53;2P3;2 	 k4;53;3P3;3 ¼ 0;

dP4;6
dr

	 k4;63;2P3;2 ¼ 0;

dP4;7
dr

	 k4;73;3P3;3 ¼ 0:

ð1Þ
In those equations, Pi;j is the probability of being in state Si;j (i ¼ 1; 2; 3; 4, j ¼ 1; 2; . . . ; 7), and kiþ1;j0
i;j is the

failure rate from state Si;j to Siþ1;j0 . In Eq. (1) a 4-break cluster, i.e. state S4;j ðj ¼ 1; 2; . . . ; 7Þ, is assumed as
the critical size for fracturing the composite, of which a state is called the ‘‘absorbing’’ state. In this situ-

ation the composite fractures if a 3-break cluster reaches either of states S4;1;S4;2; . . . ; S4;7; the sum of the
probabilities P4;1; P4;2; . . . ; P4;7 is the composite-fracture probability, P ½4
.
P ½4
 ¼
X7
j¼1

P4;j: ð2Þ
From Eq. (2), seven equations including P4;j from the bottom of Eq. (1) are reduced to one equation as
dP ½4


dr
	 k3;1P3;1 	 k3;2P3;2 	 k3;3P3;3 ¼ 0; ð3Þ
where k3;j ðj ¼ 1; 2; 3Þ is defined as
k3;1 � k4;13;1 þ k4;23;1 þ k4;33;1;

k3;2 � k4;23;2 þ k4;33;2 þ k4;43;2 þ k4;53;2 þ k4;63;2 þ k4;73;2;

k3;3 � k4;33;3 þ k4;53;3:

ð4Þ
Here k3;j ðj ¼ 1; 2; 3Þ is the sum of all failure rates transiting from state S3;j. In other words k3;j is the failure
rate transiting from state S3;j to 4-break clusters. Thus, Eq. (1) can be reduced to seven differential equa-



K. Goda / International Journal of Solids and Structures 40 (2003) 6813–6837 6819
tions. We also found that the numbers of differential equations in cases of 5-break, 6-break and 7-break

critical clusters are reduced to 14, 36 and 118, respectively.
2.2. Determination of local load sharing factors

As mentioned earlier, the present study stochastically analyzes the fiber breaking process caused by local

load-sharing around clusters. This section describes how to determine local load-sharing factors. As shown

in Fig. 1, an initial fiber break (1-break cluster) causes stress concentration in six intact fibers adjacent to

itself. In this case, load sharing factors to intact fibers are all one and one-sixth because the load lost by the

break is transferred evenly to intact fibers. However, when a 2-break cluster occurs, the degree of the load-

sharing factor is different. Fig. 3(a) shows a schematic of a 2-break cluster. It is easily understood that intact

fibers 2 and 6 share a larger load compared to other intact fibers. Thus, two appropriate rules for estimation
of load-sharing factors were applied to the present analysis: one is the geometric local load-sharing rule and

the other is the mechanical local load-sharing rule (these are ‘‘glls’’ and ‘‘mlls’’; intact fibers adjacent to

clusters are denoted simply as ‘‘intact fibers’’.)
2.2.1. The GLLS rule

By this rule, load-sharing factors are estimated from cluster configuration and location of intact fibers

(Smith et al., 1983). If six fibers surrounding one broken fiber are intact, the load-sharing factor to each of

these intact fibers is 1 + 1/6¼ 7/6 (¼ 1.167), as mentioned above. Henceforth, the load sharing factor is
denoted as ‘‘K1ð6Þ’’, and in general as ‘‘KiðjÞ’’ (i is the broken fiber number, j is the intact fiber number). If
one of the six intact fibers is broken, the load sharing factor K1ð5Þ to the remainder is increased to one and
one-fifth. As seen in the example in Fig. 3(a), load sharing factors to intact fibers 1, 5, 6, 7, 9, and 10 are

1+ 1/5¼ 6/5 (¼ 1.200). In general, if i-fibers are broken around one broken fiber, the load sharing factor
K1ð6	iÞ to the ð6	 iÞ intact fibers is 1þ 1=ð6	 iÞ. As seen in Fig. 3(b), the load-sharing factor to intact fiber
3 is 1 + 1/(6-2)¼ 1.25 because fibers 11 and 13, adjacent to the broken fiber 12, are broken. If an intact fiber
is adjacent to two or more broken fibers, two or more load sharing factors are added to each other. For
Fig. 3. Local load-sharing factors of states S2 and S3;2, estimated by glls/mlls rules.
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example, because intact fibers 2 and 6 in Fig. 3(a) are adjacent to broken fibers 9 and 10, the load sharing

factor K2ð5Þ to fibers 2 and 6 is 1+ 1/5 + 1/5¼ 7/5 (¼ 1.400). Intact fiber 8 in state S3;2 of Fig. 3(b) is adjacent
to broken fibers 11, 12 and 13. There are four intact fibers adjacent to broken fiber 12, and five intact fibers

adjacent to broken fibers 11 and 13. The load sharing factor K2ð5Þ;1ð4Þ to fiber 8 is therefore 1 + 1/5 + 1/4 + 1/
5¼ 33/20 (¼ 1.650). Thus, if the number of broken fibers increases around intact fibers, load sharing factors
are increased. In this study, glls factors were estimated for all configurations up to 6-break clusters.

2.2.2. The MLLS rule

In this rule, load-sharing factors are estimated from mechanical analysis. This study employs shear-lag

analysis for their estimation; in this analysis, a shear-carrying matrix connects tension-carrying fibers. The

force equilibrium equation is thus given as
EA
d2uk
dx2

þ Gh
df

X6
j¼1

ðuðjÞk 	 ukÞ ¼ 0; ð5Þ
where uk is the displacement of fiber k and u
ðjÞ
k is the displacement of fiber j ðj ¼ 1; 2; . . . ; 6Þ; each of them is

hexagonally-placed around fiber k. Extensional stiffness of the fiber is EA; Gh is shear stiffness of the matrix,
whereas df is the distance between fibers. According to Hedgepeth and Van Dyke (1967), the load pk,
displacement uk and coordinate x are non-dimensionalized as
pk ¼ pLk; uk ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
df=EAGh

p
Uk; x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAdf=Gh

p
n; ð6Þ
where Lk, Uk and n are non-dimensional variables for pk, uk and x, respectively. Variable p represents an
applied load at infinity. From these non-dimensional variables, Eq. (5) is rewritten as follows:
d2Uk

dn2
þ
X6
j¼1

ðU ðjÞ
k 	 UkÞ ¼ 0: ð7Þ
Eq. (7) is the non-dimensional force equilibrium equation. Because Eq. (7) is applied to all broken fibers in

a cluster and intact fibers adjacent to it, this equation can be expressed as simultaneous ordinary differential

equations:
d2U

dn2

� �
þ ½A
fUg ¼ f0g: ð8Þ
For instance, the matrix ½A
 and displacement fUg for state S3;2 are given as
½A
 ¼

	3 1 1 1

	3 1 1

	4 1 1 1
	3 1 1

	4 1 1 1

	3 1 1

	3 1 1

	3 1 1

	5 1 1 1 1

	3 1

	6 1
Sym: 	6 1

2
666666666666666666664

3
777777777777777777775
	6
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and
fUg ¼ fU1;U2; . . . ;U13g:

By introducing a regular transform, fUg ¼ ½Q
fV g, Eq. (8) is rewritten as
½Q
 d2V

dn2

� �
þ ½A
½Q
fV g ¼ f0g: ð9Þ
Multiplying ½Q	1
 to both sides of Eq. (9) yields
d2V

dn2

� �
þ ½Q
	1½A
½Q
fV g ¼ d2V

dn2

� �
þ ½M 
fV g ¼ f0g; ð10Þ
where ½Q
	1½A
½Q
 is a diagonal matrix in which eigenvalues l1; l2; . . . ; l13 are components. ½Q
 is a matrix in
which column components are equal to eigenvectors corresponding to the eigenvalues. Eq. (10) is a group
of independent ordinary differential equations, so that each of the equations can be solved independently.

Thus,
fUðnÞg ¼ fq1gC1n þ
X13
j¼2

fqjgCje
	 ffiffiffiljp n ð11Þ
and
fLðnÞg � dU
dn

� �
¼ 1	

X13
j¼2

Cjfqjg
ffiffiffiffiffi
lj

p
e	

ffiffiffiljp n; ð12Þ
where fLg ¼ fL1; L2; . . . ; L13g and C1;C2; . . . ;C13 are constants. Boundary conditions to obtain Eqs. (12)
and (13) are given as follows:
Lkð1Þ ¼ 1 ðk ¼ 1; 2; . . . ; 13Þ ð13Þ

and
U1ð0Þ ¼ U2ð0Þ ¼ U3ð0Þ ¼ � � � ¼ U10ð0Þ ¼ 0
L11ð0Þ ¼ L12ð0Þ ¼ L13ð0Þ ¼ 0:

ð14Þ
Constants C1;C2; . . . ;C13 were obtained from Eq. (14). By substituting n ¼ 0 into Eq. (12), mlls factors are
calculated as
fLð0Þg ¼ dU
dn

� �
n¼0

¼ 1	
X13
j¼2

Cjfqjg
ffiffiffiffiffi
lj

p
: ð15Þ
In Fig. 3, mlls factors are also shown. It should be noted that the mlls rule estimates different load-sharing

factors to fibers 1, 3, 5, and 7 and fibers 4, 8 in Fig. 3(a), and fibers 1, 5, fibers 7, 9 and fibers 6, 10 in Fig.

3(b); those all indicate the same factors under the glls rule. This is because fibers 1, 3, 5, and 7 are more
closely placed to 2-break clusters than fibers 4 and 8 in state S2; also, fibers 9 and 7 are more closely placed

to 3-break cluster than fibers 1, 5, 6, and 10 in state S3;2. Thus, we obtained from mlls rule three and seven

different load-sharing factors in states S2 and S3;2, respectively. In states S3;1 and S3;3, three and two different
load-sharing factors were obtained. As shown in Fig. 1, state S2 generates three different 3-break clusters;

states S3;1, S3;2 and S3;3 generate three, six and two different 4-break clusters. That is to say, the number of
different mlls factors agrees with the number of fiber breaking paths without rotated and reflected cluster

configurations. Mlls factors were calculated for all configurations from 1-break to 6-break clusters. The

results showed that, in all cases, the number of different mlls factors agrees with the number of fiber
breaking paths. Another interesting feature derived from the mlls rule is that, whereas mlls factors become

larger than glls factors for K1ð5Þ (fibers 1, 5, 6, 7, 9, and 10) and K1ð4Þ fiber 3) in state S3;2, mlls factors become
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smaller for K1ð5Þ;1ð4Þ (fibers 2, 4) and K2ð5Þ;1ð4Þ (fiber 8). The maximum difference between glls and mlls factors
is (1.650)1.483¼ ) 0.167 at K2ð5Þ;1ð4Þ Difference between glls and mlls factors becomes larger as cluster size
increases. Glls and mlls factors giving the maximum differences were 1.900/1.620 for one intact fiber sur-

rounded by four broken fibers in state S4;6, 2.150/1.786 for one intact fiber surrounded by five broken fibers
in state S5;20, and 2.500/2.009 for one intact fiber surrounded by six hexagonally-placed broken fibers in

state S6;77. In the local load-sharing rule, only intact fibers adjacent to broken fiber(s) share lost load(s), so

sums of glls and mlls factors must be equal. Therefore, it is proven that the glls rule generates a larger

difference between load-sharing factors in each state than the mlls rule.
2.3. Analytical solution for probabilities of being in states

The next problem of interest is how to derive the failure rate. In this problem, first, a statistical distri-

bution of fiber strength must be assumed. We assume here that the statistical distribution obeys the fol-

lowing two-parameter Weibull distribution function
P ðX 6 rÞ � F ðrÞ ¼ 1	 exp
�
	 r

r0

� 
mf�
: ð16Þ
In that equation, X is fiber strength, F ðrÞ is the cumulative probability at stress r, and mf and r0 are the
Weibull�s shape and scale parameters, respectively. The failure rate kðrÞ of this distribution function is
given as
kðrÞ ¼ mfrmf	1

rmf
0

: ð17Þ
This failure rate should be given to transition S0 ! S1 because there is no fiber break at an initial loading

stage; therefore, k10 ¼ kðrÞ. However, 1-break cluster brings the effect of local load-sharing. That is, at the
transition from S1 to S2,
k21 ¼ 6kðK1ð6ÞrÞ ¼ 6K
mf	1
1ð6Þ kðrÞ � h21kðrÞ: ð18Þ
The figure ‘‘6’’ of Eq. (18) means that there are six fiber breaking paths at this state transition because there

are six intact fibers around 1-break. At the transition from a 2-break to 3-break cluster, the total number of

paths is eight, but the apparent number of fiber breaking paths without rotated and reflected cluster

configurations is three (henceforth, we shall call the number without rotated and reflected cluster con-

figurations the ‘‘apparent’’ number). In these eight paths, breaks of fibers 4 or 8 in Fig. 2(a) generate state

S3;1. Breaks of fibers 1, 3, 5 or 7 generate state S3;2, and breaks of fibers 2 or 6 generate S3;3. Thus, failure
rates for 3-break clusters are given as
k3;12 ¼ 2k10ðK1ð5ÞrÞ ¼ 2K
mf	1
1ð5Þ k10ðrÞ � h3;12 k10ðrÞ;

k3;22 ¼ 4k10ðK1ð5ÞrÞ ¼ 4K
mf	1
1ð5Þ k10ðrÞ � h3;22 k10ðrÞ;

k3;32 ¼ 2k10ðK2ð5ÞrÞ ¼ 2K
mf	1
2ð5Þ k10ðrÞ � h3;32 k10ðrÞ:

ð19Þ
By the mlls rule, first and second load-sharing factors K1ð5Þ of Eq. (19) differ as shown in Fig. 3(a); but, for
simplicity, the same notation is used here. At the transition from a 3-break to a 4-break cluster, failure rates

from S3;2 are exemplified below. That is, breaks of fibers 6 or 10 in Fig. 3(b) generate state S4;2. Breaks of

fibers 2 or 4 generate state S4;3, breaks of fibers 1 or 5 generate S4;4, and breaks of fibers 7 or 9 generate S4;6.
Breaks of fibers 8 and 3 generate S4;5, and S4;7, respectively. Thus, the total number of these paths is ten, and
the failure rates are as follows:
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Numb

%

S2 !
(F

S2 !
(F

S2 !
(F

Freq

l4 is th
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k4;23;2 ¼ 2k
1
0ðK1ð5ÞrÞ ¼ 2K

mf	1
1ð5Þ k10ðrÞ � h4;23;2k

1
0ðrÞ;

k4;33;2 ¼ 2k
1
0ðK1ð5Þ;1ð4ÞrÞ ¼ 2K

mf	1
1ð5Þ;1ð4Þk

1
0ðrÞ � h4;33;2k

1
0ðrÞ;

k4;43;2 ¼ 2k
1
0ðK1ð5ÞrÞ ¼ 2K

mf	1
1ð5Þ k10ðrÞ � h4;43;2k

1
0ðrÞ;

k4;53;2 ¼ k10ðK2ð5Þ;1ð4ÞrÞ ¼ Kmf	1
2ð5Þ;1ð4Þk

1
0ðrÞ � h4;53;2k

1
0ðrÞ;

k4;63;2 ¼ 2k
1
0ðK1ð5ÞrÞ ¼ 2K

mf	1
1ð5Þ k10ðrÞ � h4;63;2k

1
0ðrÞ;

k4;73;2 ¼ k10ðK1ð4ÞrÞ ¼ Kmf	1
1ð4Þ k10ðrÞ � h4;73;2k

1
0ðrÞ:

ð20:1Þ
Because the total number of paths from S2 to S3;2 is four as in Eq. (19), the total number of paths from 2-

break to 4-break clusters through S3;2 is (4 · 10¼ ) 40. Estimated easily, transitions from S3;1 and S3;3 give
failure rates as
k4;13;1 ¼ 2k
1
0ðK1ð5ÞrÞ ¼ 2K

mf	1
1ð5Þ k10ðrÞ � h4;13;1k

1
0ðrÞ;

k4;23;1 ¼ 4k
1
0ðK1ð5ÞrÞ ¼ 4K

mf	1
1ð5Þ k10ðrÞ � h4;23;1k

1
0ðrÞ;

k4;33;1 ¼ 4k
1
0ðK1ð5Þ;1ð4ÞrÞ ¼ 4K

mf	1
1ð5Þ;1ð4Þk

1
0ðrÞ � h4;33;1k

1
0ðrÞ

ð20:2Þ
and
k4;33;3 ¼ 6k
1
0ðK1ð4ÞrÞ ¼ 6K

mf	1
1ð4Þ k10ðrÞ � h4;33;3k

1
0ðrÞ;

k4;53;3 ¼ 3k
1
0ðK2ð4ÞrÞ ¼ 3K

mf	1
2ð4Þ k10ðrÞ � h4;53;3k

1
0ðrÞ:

ð20:3Þ
Although the number of failure rates, i.e. the apparent number of fiber breaking paths as seen in Fig. 1 is

11, the total number of fiber breaking paths at the transition from 3-break to 4-break clusters is 29. This is

because the numbers of intact fibers in states S3;1, S3;2 and S3;3, are 10, 10 and 9, respectively. Table 1 shows

the number of fiber breaking paths from 2-break to 4-break clusters. As seen in this table, there are 78 paths

from 2-break to 4-break clusters; state S3;2 is the most probable state of the seven 4-break cluster configu-
rations. At the transition from 4-break to 5-break clusters and the transition from 5-break to 6-break

clusters, similarly to the above, all fiber breaking paths were considered in estimating failure rates. Details

are omitted in this paper, but readers can refer to transitions from P4;j ðj ¼ 1; 2; . . . ; 7Þ indicated in pa-
rentheses regarding fiber breaking paths to 5-break of Fig. 2. When Eqs. (18)–(20) are substituted into Eq.

(1), probabilities of being in states, P0; P1; P2; P3;i ði ¼ 1; 2; 3Þ and P4;l ðl ¼ 1; 2; . . . ; 7Þ are obtained analyti-
cally as
P0 ¼ expð	h0KfÞ; ð21:1Þ
1

er of fiber breaking paths from a 2-break cluster to a 4-break cluster

S4;1
ðl4 ¼ 12Þ

S4;2
ðl4 ¼ 12Þ

S4;3
ðl4 ¼ 11Þ

S4;4
ðl4 ¼ 12Þ

S4;5
ðl4 ¼ 10Þ

S4;6
ðl4 ¼ 12Þ

S4;7
ðl4 ¼ 12Þ

Number of fiber

breaking path

S3;1
requency 2)

2· 2 2· 4 2 · 4 – – – – 20

S3;2
requency 4)

– 4· 2 4 · 2 4· 2 4· 1 4 · 2 4· 1 40

S3;3
requency 2)

– – 2 · 6 – 2· 3 – – 18

uency (%) 4 (5.1) 16 (20.5) 28 (35.9) 8 (10.3) 10 (12.8) 8 (10.3) 4 (5.1) Total 78

e number of intact fibers adjacent to four broken fibers.



6824 K. Goda / International Journal of Solids and Structures 40 (2003) 6813–6837
P1 ¼ ð	1Þh10
X1
j¼0

expð	hjKfÞQ1

k¼0
k 6¼j

ðhj 	 hkÞ
; ð21:2Þ

P2 ¼ h10h
2
1

X2
j¼0

expð	hjKfÞQ2

k¼0
k 6¼j

ðhj 	 hkÞ
; ð21:3Þ

P3;i ¼ ð	1Þh10h21h
3;i
2

X3;i
j¼0

expð	hjKfÞQ3;i

k¼0
k 6¼j

ðhj 	 hkÞ
ði ¼ 1; 2; 3Þ; ð21:4Þ

P4;l ¼ Cl þ h10h
2
1h
3;i
2 h

4;l
3;i

X3;i
j¼0

expð	hjKfÞ
hj
Q3;i

k¼0
k 6¼j

ðhj 	 hkÞ
ðl ¼ 1; 2; 3 for i ¼ 1; l ¼ 2; 3; 4; 5; 6; 7 for i ¼ 2;

l ¼ 3; 5 for i ¼ 3Þ; ð21:5Þ
where Kf ¼ ðr=r0Þmf , j corresponds to the state subscript, e.g. j ¼ 1 for S1 and j ¼ 3; 2 for S3;2, and Cl is
a constant of integration. From Eq. (3) fracture probability P ½4
 caused by 4-break cluster formation can

be obtained as
P ½4
 ¼ 1þ h10h
2
1h
3;1
2 h3;1

X3;1
j¼0

expð	hjKfÞ
hj
Q3;1

k¼0
k 6¼j

ðhj 	 hkÞ
þ h10h

2
1h
3;2
2 h3;2

X3;2
j¼0

expð	hjKfÞ
hj
Q3;2

k¼0
k 6¼j

ðhj 	 hkÞ

þ h10h
2
1h
3;3
2 h3;3

X3;3
j¼0

expð	hjKfÞ
hj
Q3;3

k¼0
k 6¼j

ðhj 	 hkÞ

¼ 1þ ð	1Þ4
X3
i¼1

h10h
2
1h
3;i
2 h3;i

X3;i
j¼0

expð	hjKfÞ
hj
Q3;i

k¼0
k 6¼j

ðhj 	 hkÞ

8><
>:

9>=
>;: ð22Þ
Some constants used in Eqs. (21) and (22) are
h0 ¼ h10ð¼ 1Þ; h1 ¼ h21; h2 ¼ h3;12 þ h3;22 þ h3;32 : ð23:1Þ

h3;1 ¼ h4;13;1 þ h4;23;1 þ h4;33;1; h3;2 ¼ h4;23;2 þ h4;33;2 þ h4;43;2 þ h4;53;2 þ h4;63;2 þ h4;73;2; h3;3 ¼ h4;33;3 þ h4;53;3: ð23:2Þ
Eqs. (21.1)–(21.4) and (22) were solved under initial and converging conditions as follows:
P0 ¼ 1 and P1 ¼ P2 ¼ P3;1 ¼ P3;2 ¼ P3;3 ¼ 0 for r ¼ 0; ð24:1Þ

P ½4
 ¼ 1 for r ! 1: ð24:2Þ
In the first portion of Eq. (22), second, third and fourth terms are related with probabilities transiting from

states S3;1, S3;2 and S3;3, respectively. That is, because these terms have constants h3;1, h3;2 and h3;3 denoted as
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Eq. (23.2), respectively, it is inferred that all fiber breaking paths from S3;j to S4;j are taken into account for

Eq. (22).

It is relatively simple to obtain fracture probabilities P ½1
, P ½2
, P ½3
 (see Appendix B), but more difficult to

obtain fracture probabilities P ½5
, P ½6
, P ½7
 compared to P ½4
. The present study, however, attempted to obtain
solutions P ½5
, P ½6
, P ½7
 by accounting for all fiber breaking paths to each critical cluster. For instance,

fracture probability P ½5
 is given as (see Appendix C)
P ½5
 ¼ 1þ ð	1Þ5
X3
l¼1

X4;M
m

h10h
2
1h
3;l
2 h4;m3;l h4;m

X4;m
j¼0

expð	hjKfÞ
hj
Q4;m

k¼0
k 6¼j

ðhj 	 hkÞ

8><
>:

9>=
>;; ð25Þ
where
M ¼ 3 and m ¼ 1; 2; 3 for l ¼ 1;

M ¼ 7 and m ¼ 2; 3; 4; 5; 6; 7 for l ¼ 2;

M ¼ 5 and m ¼ 3; 5 for l ¼ 3:
Solutions of fracture probabilities P ½6
 and P ½7
 are shown in Appendix D. Fracture probabilities as a result

of critical clusters of more than seven breaks were not analyzed here because counting cluster configura-

tions and fiber breaking paths for more than seven breaks was beyond the author�s capability. However, as
described in the next section, we approximate fracture probabilities resulting from more critical clusters,

using a one-state birth process. This concept was inferred from the negligibly small difference between glls

and mlls fracture probabilities.
3. Results and discussion

3.1. Fracture probabilities resulting from critical cluster formations

Fig. 4 shows fracture probabilities P ½1
 to P ½7
 vs. dimensionless stress r=r0 in a Weibull probability scale,
predicted from the proposed model (henceforth, this model is denoted as the ‘‘branching process model’’).

Fracture probabilities, except for P ½1
 were calculated by substituting glls and mlls factors. The Weibull

shape parameter, mf , for fiber strength was given as 5.0 with reference to many experimental results (Goda
and Fukunaga, 1986). The result shows that, as cluster size increases, distributions of fracture probabilities

indicate a larger slope and shift to a higher stress region. A point of interest in Fig. 4 is the surprising

agreement between distributions of glls and mlls fracture probabilities, despite the fact that both these

factors are quite different. To find precise differences between both fracture probabilities, numerical values

of P ½3
, P ½5
 and P ½7
 are shown in Table 2. There is a slight difference between both fracture probabilities at
lower dimensionless stress. This is because the glls rule yields higher load-sharing factors in a local area in

which broken fibers are concentrated, as mentioned earlier. However, we consider that the difference may

be neglected in discussing composite strength in a wide probability-scale as in the present study. Also

solutions obtained from smaller and larger Weibull moduli, i.e. mf ¼ 2:5 and 10, showed agreement be-
tween glls and mlls fracture probabilities, though the figures are omitted. Slope of the distribution of

fracture probability corresponds to the amount of Weibull shape parameter; it is also related to strength

reliability of materials. That is, a larger Weibull shape parameter gives a more reliable strength for ma-

terials. Each slope of distributions of fracture probabilities was numerically calculated. Results are shown
in Fig. 5, in which only slopes of distributions of glls fracture probabilities are indicated. The slopes are



Table 2

Fracture probabilities derived from exact solutions by glls and mlls, and approximation by ells

r=r0 Fracture probability P ½3
 Fracture probability P ½5
 Fracture probability P ½7


Exact solu-

tion by glls

Exact solu-

tion by mlls

Approxima-

tion by ells

Exact solu-

tion by glls

Exact solu-

tion by mlls

Approxima-

tion by ells

Exact solu-

tion by glls

Exact solu-

tion by mlls

Approxima-

tion by ells

0.01 3.728· 10	29 3.651· 10	29 3.618· 10	29 – – – – –

0.02 1.222· 10	24 1.196· 10	24 1.186· 10	24 – – – – –

0.05 1.138· 10	18 1.114· 10	18 1.104· 10	18 7.166· 10	30 6.188· 10	30 5.837· 10	30 – – –

0.1 3.728· 10	14 3.651· 10	14 3.618· 10	14 2.404· 10	22 2.076· 10	22 1.958· 10	22 2.388· 10	30 1.524· 10	30 1.292· 10	30
0.2 1.219· 10	9 1.193· 10	9 1.183· 10	9 8.024· 10	15 6.930· 10	15 6.537· 10	15 8.131· 10	20 5.192· 10	20 4.405· 10	20
0.3 5.246· 10	7 5.139· 10	7 5.093· 10	7 1.953· 10	10 1.690· 10	10 1.595· 10	10 1.113· 10	13 7.150· 10	14 6.079· 10	14
0.5 8.902· 10	4 8.744· 10	4 8.677· 10	4 4.213· 10	5 3.727· 10	5 3.548· 10	5 2.857· 10	6 1.987· 10	6 1.733· 10	6
0.8 1.725· 10	1 1.717· 10	1 1.713· 10	1 1.295· 10	1 1.262· 10	1 1.249· 10	1 1.063· 10	1 9.994· 10	2 9.737· 10	2
1.0 5.746· 10	1 5.741· 10	1 5.739· 10	1 5.495· 10	1 5.474· 10	1 5.465· 10	1 5.350· 10	1 5.306· 10	1 5.287· 10	1
1.2 9.040· 10	1 9.039· 10	1 9.038· 10	1 8.978· 10	1 8.978· 10	1 8.976· 10	1 8.950· 10	1 8.940· 10	1 8.936· 10	1
1.5 9.994· 10	1 9.994· 10	1 9.994· 10	1 9.994· 10	1 9.994· 10	1 9.994· 10	1 9.994· 10	1 9.994· 10	1 9.994· 10	1

Fig. 4. Fracture probabilities from 1-break to 7-break critical clusters (by the branching process model, mf ¼ 5).
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constant until around r=r0 ¼ 0:3; they then approach five, the slope of P ½1
. In other words, the slope of P ½i


ði ¼ 2; 3; . . . ; 7Þ, mc, is given obviously as

mc ¼ i� mf : ð26Þ
This relation is also seen in the result of a two-dimensional fiber array (Goda, 2001). Thus, the proposed

branching process model demonstrates without using any power law function that Eq. (26) is an essential
feature in strength reliability of the hexagonally-placed fiber composite.



Fig. 5. Slopes in Weibull probability scale, estimated numerically from distributions of fracture probabilities P ½2
 to P ½7
 (by the

branching process model, mf ¼ 5).
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As mentioned in Section 1, a lower tail approximation model for fracture probability was proposed in

the model of Smith et al. (1983), in which a power law function was used for lower tail behavior of the

Weibull distribution. In that model, a multiplication rule is applied for each fiber breaking process, and the

fracture probability is obtained from the sum of all possibilities of processes. That is, fracture probability

P ½k
 of the composite at stress r is given as P ½k
 � dkðr=r0Þkq, where k is the number of broken fibers included
in a critical cluster that fractures the composite. Fig. 6 shows results for glls fracture probabilities for that

model and the present model. Whereas solutions yielded by the present model show P ½1
 P P ½2
 P � � � P P ½7
,

the Smith�s distribution behaves as a broken line with plural nodes. Present distribution P ½7
 behaves with
the same slope as the Smith model, but tends to be in a higher stress region. Because the upper tail of the

Weibull distribution is not accounted in their model, deviation between these two distributions may be

inferred from upper tail behavior. Mahesh et al. (2002), considered the importance of the upper tail of the

Weibull distribution through Monte-Carlo simulations, and noticed that at small Weibull moduli. They

considered that the upper tail plays a central role in determining composite strength. Therefore, the present

study is intended to clarify quantitatively how the upper tail is related with composite strength. Such

elucidation will support future work.

As mentioned earlier, the composite in this study is a unit of a chain-of-bundles, each of which is as-
sumed to be independent both statistically and structurally. If this composite has the size of actual com-

posites, the composite strength must be determined by the largest critical cluster of all units. According to

the weakest link rule, the distribution function H ½i

MN of composite strength is given as (Harlow and Phoenix,

1981a,b)
H ½i

MN ¼ 1	 f1	 P ½i
gMN

; ð27Þ
where N is the number of fibers and M is the number of bundles. Therefore, MN is equivalent to the

composite size. It is found from Eq. (27) that H ½i

MN is a lower tail of P

½i
 and behaves linearly with slope mc in
a Weibull scale. This fact implies that a larger size of critical clusters gives a more reliable composite
strength, as is often noted (Smith et al., 1983; Phoenix and Smith, 1983).



Fig. 6. Comparison of the branching process model with the characteristic distribution function W ðxÞ of Smith et al. (1983).
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3.2. Approximate model by one-state birth process

The branching process model showed that glls and mlls fracture probabilities are almost identical despite

the fact that glls factors vary more largely among intact fibers than mlls factors. This means that such

variation in load-sharing factors does not significantly affect the difference between fracture probabilities.

From this fact, it may be inferred that, even if all load-sharing factors around a cluster are equal, the

fracture probability is not so significantly different from fracture probabilities predicted by the branching

process model in Section 3.1. Thus, we propose below an approximate model for predicting fracture

probabilities resulting from critical clusters of the hexagonally-placed fiber composite. This model is based
on two assumptions:

(1) All intact fibers adjacent to broken fibers possess an even load-sharing factor. That is, the load-sharing

factor is given by even local load-sharing rule (the ‘‘ells’’ rule).

(2) The number of cluster configurations is only one at each i-break cluster.

From these assumptions, the fiber breaking process can be expressed as a one-state birth process without

any state branching. That is, the space of discrete states is S0 ! S1 ! � � � ! Si ! � � � ! Sn ! Snþ1 where
subscript i indicates the number of broken fibers. This process is satisfied with the following simultaneous
differential equations:
dP0
dr

þ k10P0 ¼ 0;

dP1
dr

	 k10P0 þ k21P1 ¼ 0;

..

.

dPn
dr

	 kn
n	1Pn	1 þ knþ1

n Pn ¼ 0;

dPnþ1
dr

	 knþ1
n Pn ¼ 0:

ð28Þ
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In those equations, kiþ1
i ði ¼ 0; 1; 2; . . . ; nÞ is a failure rate at the transition from Si to Siþ1 and given as
kiþ1
i ¼ �llikðKirÞ; ð29Þ
where li is the average number of intact fibers adjacent to broken fibers in an i-break cluster (see Appendix
E). This number may be called the ‘‘closed-loop’’ number because intact fibers enclose the cluster with a

loop-like shape. Thus, the load-sharing factor Ki is given as
Ki ¼ 1þ
i
�lli
: ð30Þ
Solutions of Eq. (28) were obtained inductively as
P ½nþ1
 ¼ 1þ ð	1Þnþ1
Xn

j¼0

Yn
k¼0
k 6¼j

hjþ1j

hjþ1j 	 hkþ1k

8><
>:

9>=
>; expð	hjþ1j K0Þ; ð31Þ
where hjþ1j is a constant given as: hjþ1j ¼ ljK
mf	1
j ðj ¼ 1; 2; . . . ; nÞ. Initial and converging conditions used

here are:
P0 ¼ 1; Pi ¼ 0 ði ¼ 1; 2; . . . ; nÞ for r ¼ 0;
Pnþ1 ¼ 1 for r ! 1:

ð32Þ
Fig. 7 shows fracture probabilities P 0½i
 ði ¼ 1; 2; . . . ; 7Þ approximated from Eq. (31). Distributions of

fracture probabilities indicate a larger slope and shift to a higher stress region as cluster size increases. This

behavior shows the same tendency as that of fracture probabilities predicted by the branching process

model in Fig. 4. In Table 2, numerical values of fracture probabilities are shown. Remarkably, approximate

values fairly approximate the solutions of mlls fracture probabilities. Approximate values for other Weibull

moduli, i.e. mf ¼ 2:5 and 10, were also analyzed to verify agreement with the exact solutions proposed here.
Those results are shown in Table 3. In mf ¼ 2:5 the approximation values P ½3
 and P ½7
 agree very well with
the exact solution of glls fracture probability. Whereas the values P ½3
 obtained from mf ¼ 10 well-predict
the exact solution, the values P ½7
 from mf ¼ 10 are double figures that are smaller than the exact solution in
a low probability region. Thus, it is concluded that validity of the proposed approximation model is limited

to the case of small Weibull moduli.
3.3. Fracture probabilities resulting from critical cluster formation of more than seven breaks

We found in the preceding section that the proposed approximate model by one-state birth process is
quite effective in analyzing fracture probabilities of critical cluster size for nþ 16 7, especially for small
Weibull moduli of fiber strength. This section further predicts fracture probabilities for cluster sizes of

nþ 1 > 7. This analysis requires a method to estimate the closed-loop number of fibers. According to
Phoenix and Beyerlein (2000), the number of broken fibers in a cluster is proportional to the cross-sectional

area of a circle if cluster growth assumes a circular shape. We assumed in the above that the lost load

caused by fiber breakage is redistributed evenly onto the closed-loop intact fibers, which may be propor-

tional to the circumference. Therefore, the closed-loop number of fibers is one order less than the cross-

sectional area, i.e. li / ðnþ 1Þ1=2. Fig. 8 shows the relation between li the average closed-loop number of
fibers, and square root of cluster size ðnþ 1Þ1=2. The relation is almost linearly proportional with the slope
of 5.77 as
�lli ffi 5:77� ðnþ 1Þ1=2: ð33Þ



Fig. 7. Fracture probabilities due to various sizes of critical clusters (by the approximate model, mf ¼ 5).

Table 3

Fracture probabilities derived from exact solutions by glls and approximation by ells (mf ¼ 2:5 and 10)
r=r0 mf ¼ 2:5 mf ¼ 10

P ½3
 P ½7
 P ½3
 P ½7


Exact solu-

tion by glls

Approxima-

tion by ells

Exact solu-

tion by glls

Approxima-

tion by ells

Exact solu-

tion by glls

Approxima-

tion by ells

Exact solu-

tion by glls

Approxima-

tion by ells

0.001 4.463· 10	22 4.455· 10	22 – – – – – –

0.002 8.079· 10	20 8.065· 10	20 – – – – – –

0.005 7.797· 10	17 7.783· 10	17 – – – – – –

0.01 1.411· 10	14 1.409· 10	14 – – – – – –

0.02 2.554· 10	12 2.550· 10	12 4.127· 10	27 4.159· 10	27 – – – –

0.05 2.459· 10	9 2.454· 10	9 3.775· 10	20 3.804· 10	20 – – – –

0.1 4.394· 10	7 4.386· 10	7 6.778· 10	15 6.831· 10	15 2.894· 10	28 2.387· 10	28 – –

0.2 7.401· 10	5 7.388· 10	5 1.051· 10	9 1.059· 10	9 3.108· 10	19 2.562· 10	19 – –

0.3 1.332· 10	3 1.330· 10	3 8.716· 10	7 8.785· 10	7 5.958�10	14 4.913· 10	14 7.564· 10	27 1.072· 10	28
0.5 3.476· 10	2 3.472· 10	2 1.572· 10	3 1.584· 10	3 2.632· 10	7 2.177· 10	7 1.542· 10	11 3.237· 10	13
0.8 2.920· 10	1 2.919· 10	1 1.482· 10	1 1.487· 10	1 5.458· 10	2 5.231· 10	2 4.530· 10	2 3.514· 10	2
1.0 5.347· 10	1 5.346· 10	1 4.217· 10	1 4.222· 10	1 6.108· 10	1 6.096· 10	1 6.063· 10	1 6.008· 10	1
1.2 7.387· 10	1 7.386· 10	1 6.743· 10	1 6.746· 10	1 9.978· 10	1 9.978· 10	1 9.978· 10	1 9.978· 10	1
1.5 9.196· 10	1 9.195· 10	1 8.997· 10	1 8.998· 10	1 1.000 1.000 1.000 1.000

2.0 9.956· 10	1 9.956· 10	1 9.945· 10	1 9.945· 10	1 1.000 1.000 1.000 1.000
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Fig. 8. Relation between the numbers of closed-loop intact fibers and broken fibers in a critical cluster.
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From this relation, we can predict not only li around critical clusters with more than seven breaks, but also
fracture probabilities resulting from clusters greater than seven breaks. Thus, Fig. 7 includes dotted lines
that show fracture probabilities P ½10
, P ½15
, P ½20
, P ½30
 and P ½40
 predicted from Eq. (31). As cluster size in-

creases, distributions of fracture probabilities shift to a higher stress region and tend to converge to a

master-like distribution. The slopes mc of these distributions were also calculated; results are shown in Fig.
9. That figure shows that distributions of P ½10
, P ½15
 and P ½20
 change from slopes of approximately 50, 75,

and 100, respectively to 5. This means that a 20-break critical cluster conforms to the relation of Eq. (26).

On the other hand, distributions of P ½30
 and P ½40
 do not correspond to slopes of 150 and 200, respectively.
Fig. 9. Slopes in Weibull probability scale, estimated numerically from distributions of fracture probabilities P ½10
 to P ½40
 (by the

approximate model, mf ¼ 5).
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This is because fracture probabilities less than 10	30 were not calculated exactly because of computer

limitations. As seen in Figs. 7 and 9, however, the lower tails of distributions P ½30
 and P ½40
 exhibit a highly

reliable strength in evaluating a scale effect of H ½i

MN There may be a better predictive method for the closed-

loop number of fibers than the above, as seen in Mahesh et al. (2002), but we consider that behavior of the
approximated distributions mentioned above does not change substantially.
4. Conclusion

A Markov process model was applied to a unit of the chain-of-bundles model with fibers packed in a

hexagonal array to obtain an analytical solution for the fracture probability of a unidirectional fiber
composite. This model subsumed that a group consisting of fiber breaking points, a so-called cluster,

evolves with increased stress; the cluster evolution branches because it follows different fiber breaking paths.

It was further assumed that the cluster fractures the composite without any stress increment if it reaches a

critical size. Next, we constituted all state transitions consisting of fiber breaking paths from 1-break to 7-

break clusters. Finally, we solved analytically simultaneous differential equations obtained from transitions.

Results showed that distributions of fracture probabilities resulting from 1-break to 7-break critical

clusters indicate a larger slope in a Weibull probability scale as cluster size increases. Then, the slope is

given as follows: mc ¼ i� mf (i, the number of broken fibers in a cluster; mc and mf , Weibull shape pa-
rameters for fracture probabilities of a critical cluster and fiber strength, respectively). Although this re-

lation was found in the model of Smith et al. (1983), an important finding of this study is that the relation is

obtained analytically in the branching process model.

In the branching process model, glls and mlls fracture probabilities agreed approximately, even though

the former factors were calculated in a local area to be much larger than the latter. The author infers that

variation in the load-sharing factor does not significantly affect the difference between fracture probabilities.

Next, we proposed an approximate model for predicting fracture probability using a one-state birth pro-

cess. The approximate model predicted very similar values to those predicted from the above branching
process, especially for small Weibull moduli of fiber strength.

The square root of the number of fiber breaks in a cluster was approximately proportional to the average

number of intact fibers. When this proportional relation is applied to a critical cluster of more than seven

breaks, the proposed approximate model still maintains the relation, mc ¼ i� mf , up to a 20-break cluster.
We conclude that the branching process and approximate models proposed in this study contribute

effectively to prediction of fracture probability of a unidirectional fiber composite.
Appendix A

Table 4 shows all configurations of 6-break clusters. Each configuration is expressed from six fiber

numbers; their positions are shown in Fig. 10.
Appendix B

Fracture probability P ½1
 is equal to the statistical distribution of fiber strength. That is, P ½1
 is given as the

Weibull distribution function of Eq. (16) as
P ½1
 ¼ 1	 expðh0KfÞ: ðB:1Þ

When a 2-break cluster becomes a critical cluster, differential equations of the fiber breaking process are
composed of Eqs. (1.1), (1.2) and (1.3). But, the term ðk3;12 þ k3;22 þ k3;32 ÞP2 of Eq. (1.3) is not accounted for
because state S2 does not transit to a 3-break cluster. Thus, fracture probability P ½2
 is given as



Table 4

Configurations of 6-break clusters (six numbered fibers on each state are broken)

State Cluster State Cluster State Cluster State Cluster State Cluster State Cluster

S6;1 1–2–3–4–5–6 S6;21 18–9–10–11–12–4 S6;41 1–2–3–11–19–27 S6;61 3–9–10–11–20–27 S6;71 1–2–10–11–18–4 S6;81 9–10–11–4–20–21

S6;2 1–2–3–4–5–13 S6;22 9–10–11–12–4–19 S6;42 9–2–3–4–12–13 S6;62 3–9–10–11–18–20 S6;72 9–10–3–19–20–12 S6;82 9–10–11–4–20–27

S6;3 1–2–3–4–5–12 S6;23 9–10–11–12–4–20 S6;43 9–1–2–3–11–12 S6;63 3–9–10–11–19–27 S6;73 9–2–3–11–12–5

S6;4 1–2–3–4–5–11 S6;24 9–10–11–12–3–19 S6;44 9–2–3–4–12–20 S6;64 4–9–10–11–19–27 S6;74 1–2–10–11–18–20

S6;5 1–2–3–4–12–13 S6;25 1–2–3–4–10–12 S6;45 9–1–2–3–11–19 S6;65 1–2–10–11–4–5 S6;75 9–10–3–4–19–20

S6;6 1–2–3–4–12–21 S6;26 1–2–3–11–12–13 S6;46 1–9–10–11–20–21 S6;66 1–2–10–11–4–20 S6;76 3–9–10–19–20–26

S6;7 1–2–3–4–12–20 S6;27 1–2–3–11–12–5 S6;47 1–9–10–11–20–27 S6;67 9–2–3–4–11–19 S6;77 2–3–9–11–18–19

S6;8 1–2–3–4–11–12 S6;28 1–2–3–11–12–21 S6;48 1–9–10–11–19–20 S6;68 1–2–10–11–20–21 S6;78 9–2–3–4–11–12

S6;9 1–2–3–4–11–20 S6;29 1–2–3–11–12–20 S6;49 1–9–10–11–18–20 S6;69 1–2–10–11–20–27 S6;79 9–10–11–4–18–20

S6;10 1–2–3–4–11–19 S6;30 1–2–3–11–12–19 S6;50 1–9–10–11–17–20 S6;70 9–10–19–20–12–4 S6;80 9–10–11–4–20–28

S6;11 1–2–3–4–10–11 S6;31 1–2–3–11–20–21 S6;51 1–9–10–11–19–27

S6;12 1–2–3–4–10–19 S6;32 1–2–3–11–20–27 S6;52 1–9–10–11–19–26

S6;13 9–2–3–4–5–13 S6;33 1–2–3–11–20–19 S6;53 1–2–3–9–10–18

S6;14 9–2–3–4–5–12 S6;34 1–2–3–10–11–12 S6;54 2–9–10–11–18–19

S6;15 9–1–2–3–4–11 S6;35 1–2–3–10–11–20 S6;55 2–9–10–11–20–21

S6;16 9–10–11–12–5–21 S6;36 1–2–3–10–11–19 S6;56 2–9–10–11–20–27

S6;17 9–10–11–12–5–20 S6;37 1–2–3–10–11–18 S6;57 2–9–10–11–19–20

S6;18 9–10–11–12–5–19 S6;38 1–2–3–9–10–11 S6;58 2–9–10–11–18–20

S6;19 9–10–11–12–5–18 S6;39 1–2–3–11–19–18 S6;59 2–9–10–11–17–20

S6;20 17–9–10–11–12–5 S6;40 1–2–3–11–19–26 S6;60 3–9–10–11–19–20
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Fig. 10. Numbered fibers in a hexagonal array.
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P ½2
 ¼ 1þ ð	1Þ2h10h1
X1
j¼0

expð	hjKfÞ
hj
Q1

k¼0
k 6¼j

ðhj 	 hkÞ
: ðB:2Þ
When a critical cluster is formed by a 3-break cluster, the differential equations comprise Eqs. (1.1)–(1.6).

However, the terms including P3;1, P3;2 and P3;3 of Eqs. (1.4)–(1.6) are not accounted for, as mentioned
above. Therefore, fracture probability P ½3
 is given as
P ½3
 ¼ P3;1 þ P3;2 þ P3;3 ¼ 1þ ð	1Þ3h10h21h2
X2
j¼0

expð	hjKfÞ
hj
Q2

k¼0
k 6¼j

ðhj 	 hkÞ
: ðB:3Þ
Appendix C

The apparent number of fiber breaking paths transiting from a 4-break to a 5-break cluster is forty-five,

as estimated from Fig. 2. That is, the number of state S4;1 to S5;i is four, i.e. i ¼ 1; 2; 3; 4. Also, S4;2 to S5;i is
12, i.e. i ¼ 2; 3; 5; 6; 8; 9; 10; 13; 14; 15; 16; 17, state S4;3 to S5;i is 10, i.e. i ¼ 3; 4; 5; 6; 8; 10; 11; 12; 15; 18, state
S4;4 to S5;i is six, i.e. i ¼ 5; 15; 17; 19; 21; 22, state S4;5 to S5;i is three, i.e. i ¼ 5; 6; 11, state S4;6 to S5;i is seven,
i.e. i ¼ 6; 8; 16; 18; 19; 20; 21, and state S4;7 to S5;i is three, i.e. i ¼ 9; 11; 21. The constants h4;j ðj ¼ 1; 2; . . . ; 7Þ
are therefore given as
h4;1 ¼
X
i

h5;i4;1 ði ¼ 1; 2; 3; 4Þ;

h4;2 ¼
X
i

h5;i4;2 ði ¼ 3; 5; 6; 8; 9; 10; 13; 14; 15; 16; 17Þ;

h4;3 ¼
X
i

h5;i4;3 ði ¼ 3; 4; 5; 6; 8; 10; 11; 12; 15; 18Þ;

h4;4 ¼
X
i

h5;i4;4 ði ¼ 5; 15; 17; 19; 21; 22Þ;

h4;5 ¼
X
i

h5;i4;5 ði ¼ 5; 6; 11Þ;

h4;6 ¼
X
i

h5;i4;6 ði ¼ 6; 8; 16; 18; 19; 20; 21Þ;

h4;7 ¼
X
i

h5;i4;7 ði ¼ 9; 11; 21Þ:

ðC:1Þ
Because the fiber breaking paths include rotated and reflected cluster configurations, the total number of
fiber breaking paths from a 4-break to a 5-break cluster increases to 293; the total number of fiber breaking

paths from a 2-break to a 5-break cluster increases to 888.
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Appendix D

Fracture probability P ½6
 resulting from a 6-break cluster formation is given as
P ½6
 ¼ 1þ ð	1Þ6
X3
l¼1

X4;M
m

X5;B
b

h10h
2
1h
3;l
2 h4;m3;l h

5;b
4;mh5;b

X5;b
j¼0

expð	hjKfÞ
hj
Q5;b

k¼0
k 6¼j

ðhj 	 hkÞ

8><
>:

9>=
>;; ðD:1Þ
where
M ¼ 3 and m ¼ 1; 2; 3 for l ¼ 1;
M ¼ 7 and m ¼ 2; 3; 4; 5; 6; 7 for l ¼ 2;
M ¼ 5 and m ¼ 3; 5 for l ¼ 3
and
B ¼ 4 and b ¼ 1; 2; 3; 4 for m ¼ 1;
B ¼ 12 and b ¼ 2; 3; 4; 5; 6; 8; 9; 10; 13; 14; 15; 16; 17 for m ¼ 2;
B ¼ 10 and b ¼ 3; 4; 5; 6; 8; 10; 11; 12; 15; 18 for m ¼ 3;
B ¼ 6 and b ¼ 5; 15; 17; 19; 21; 22 for m ¼ 4;
B ¼ 3 and b ¼ 5; 6; 11 for m ¼ 5;
B ¼ 6 and b ¼ 6; 8; 16; 18; 19; 20; 21 for m ¼ 6;
B ¼ 3 and b ¼ 9; 11; 21 for m ¼ 7:
Fracture probability P ½7
 resulting from 7-break cluster formation is given as
P ½7
 ¼ 1þ ð	1Þ7
X3
l¼1

X4;M
m

X5;B
b

X6;A
a

h10h
2
1h
3;l
2 h4;m3;l h

5;b
4;mh

6;a
5;bh6;a

X6;a
j¼0

expð	hjKfÞ
hj
Q6;a

k¼0
k 6¼j

ðhj 	 hkÞ

8><
>:

9>=
>;; ðD:2Þ
where
M ¼ 3 and m ¼ 1; 2; 3 for l ¼ 1;
M ¼ 7 and m ¼ 2; 3; 4; 5; 6; 7 for l ¼ 2;
M ¼ 5 and m ¼ 3; 5 for l ¼ 3;
B ¼ 4 and b ¼ 1; 2; 3; 4 for m ¼ 1;
B ¼ 12 and b ¼ 2; 3; 4; 5; 6; 8; 9; 10; 13; 14; 15; 16; 17 for m ¼ 2;
B ¼ 10 and b ¼ 3; 4; 5; 6; 8; 10; 11; 12; 15; 18 for m ¼ 3;
B ¼ 6 and b ¼ 5; 15; 17; 19; 21; 22 for m ¼ 4;
B ¼ 3 and b ¼ 5; 6; 11 for m ¼ 5;
B ¼ 6 and b ¼ 6; 8; 16; 18; 19; 20; 21 for m ¼ 6;
B ¼ 3 and b ¼ 9; 11; 21 for m ¼ 7
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and
A ¼ 4 and a ¼ 1; 2; 3; 4 for b ¼ 1;
A ¼ 14 and a ¼ 2; 3; 5; 6; 7; 8; 13; 14; 16; 17; 18; 19; 20; 25 for b ¼ 2;
A ¼ 13 and a ¼ 3; 4; 8; 9; 10; 11; 14; 15; 17; 19; 21; 22; 23 for b ¼ 3;
A ¼ 7 and a ¼ 4; 11; 12; 18; 22; 24; 25 for b ¼ 4;
A ¼ 12 and a ¼ 8; 11; 34; 35; 36; 37; 38; 48; 57; 60; 63; 78 for b ¼ 5;
A ¼ 6 and a ¼ 11; 36; 38; 53; 54; 60 for b ¼ 6;
A ¼ 7 and a ¼ 14; 32; 42; 44; 50; 59; 78 for b ¼ 7;
A ¼ 13 and a ¼ 15; 25; 33; 38; 43; 45; 49; 58; 61; 62; 67; 78; 79 for b ¼ 8;
A ¼ 8 and a ¼ 16; 23; 50; 63; 79; 80; 81; 82 for b ¼ 9;
A ¼ 13 and a ¼ 9; 12; 17; 22; 36; 49; 51; 59; 60; 61; 62; 63; 64 for b ¼ 10;
A ¼ 7 and a ¼ 23; 24; 37; 54; 58; 60; 63 for b ¼ 11;
A ¼ 4 and a ¼ 22; 54; 57; 62 for b ¼ 12;
A ¼ 8 and a ¼ 6; 9; 29; 31; 32; 33; 35; 80 for b ¼ 13;
A ¼ 7 and a ¼ 19; 31; 46; 47; 48; 49; 50 for b ¼ 14;
A ¼ 13 and a ¼ 18; 21; 29; 36; 48; 51; 52; 55; 56; 57; 58; 59; 79 for b ¼ 15;
A ¼ 14 and a ¼ 7; 10; 30; 33; 36; 39; 40; 41; 44; 45; 47; 56; 61; 82 for b ¼ 16;
A ¼ 14 and a ¼ 5; 8; 26; 27; 28; 29; 30; 34; 42; 43; 46; 51; 55; 81 for b ¼ 17;
A ¼ 7 and a ¼ 10; 12; 37; 52; 53; 62; 67 for b ¼ 18;
A ¼ 14 and a ¼ 11; 27; 41; 43; 52; 56; 65; 66; 69; 70; 71; 72; 73; 78 for b ¼ 19;
A ¼ 8 and a ¼ 39; 45; 54; 67; 70; 72; 75; 77 for b ¼ 20;
A ¼ 13 and a ¼ 30; 37; 58; 60; 66; 71; 72; 74; 75; 76; 79; 81; 82 for b ¼ 21;
A ¼ 8 and a ¼ 28; 35; 48; 55; 66; 68; 69; 74 for b ¼ 22:
Constants h5;b and h6;a include all load-sharing factors on intact fibers around the 6-break cluster, similarly
to Eq. (B.1).
Appendix E

The numbers of closed-loop intact fibers at states S3;1, S3;2 and S3;3 are 10, 10 and 9, respectively.
Transition frequencies of state S2 to states S3;1, S3;2 and S3;3 are 2, 4 and 2, respectively (see Table 1). The

average number l3 of closed-loop intact fibers may therefore be estimated as
�ll3 ¼
10� 2þ 10� 4þ 9� 2

2þ 4þ 2 ¼ 78
8

¼ 9:75:
The ‘‘78’’ is the total number of fiber breaking paths from a 2-break to a 4-break cluster; the ‘‘8’’ is the total

number of fiber breaking paths from a 2-break to a 3-break cluster. Generally, the average number is given

as
�lli ¼
The total number of paths from ði	 1Þ- to ðiþ 1Þ-break
The total number of paths from ði	 1Þ- to i-break

:
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Therefore, average numbers of closed-loop intact fibers on a 4-break to a 6-break cluster are obtained as
�ll4 ¼ 888=78 ¼ 11:39;
�ll5 ¼ 11; 488=888 ¼ 12:94;
�ll6 ¼ 165; 734=11; 488 ¼ 14:43:
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